Principles of Computer Science I
Errors & Abstract Data Types

loannis Chatzigiannakis

Sapienza University of Rome

Lecture 13

Syntax Errors

Until now error messages have not been more than mentioned.
There are (at least) two distinguishable kinds of errors:

» syntax errors and

P> exceptions.

1>>> while True print('Hello world")

2 File "<stdin >", line 1

3 while True print('Hello world")
. A

5 SyntaxError: invalid syntax

» File name and line number are printed so you know where to
look in case the input came from a script.

Exceptions

1. Even if a statement or expression is syntactically correct, it
may cause an error when an attempt is made to execute it.

2. Errors detected during execution are called exceptions and are
not unconditionally fatal: you will soon learn how to handle
them in Python programs.

3. Most exceptions are not handled by programs, however, and
result in error messages.

1>>> 10 % (1/0)

2 Traceback (most recent call last):

3 File "<stdin >", line 1, in <module>
4 ZeroDivisionError: division by zero

Exceptions: Examples

1>>> 4 + spamx3

2 Traceback (most recent call last):
3 File "<stdin >", line 1, in <module>
4 NameError: name 'spam' is not defined

5
6>>> 2" 4 2

7 Traceback (most recent call last):

8 File "<stdin >", line 1, in <module>

9 TypeError: Can't convert 'int' object to str implicitly

» The last line of the error message indicates what happened.

» Exceptions come in different types, and the type is printed as
part of the message.

» Standard exception names are built-in identifiers (not reserved
keywords).

» We are allowed to define our own exceptions.




Handling Exceptions

» It is possible to write programs that handle selected
exceptions.

1 while True:

2 try:

3 x = int(input (" Please enter a number: "))
4 break

5 except ValueError:

6

print (" Oops! That was no valid number. Try again

Try statement
The try statement works as follows:

1. First, the try clause (the statement(s) between the try and
except keywords) is executed.

2. If no exception occurs, the except clause is skipped and
execution of the try statement is finished.

3. If an exception occurs during execution of the try clause, the
rest of the clause is skipped. Then if its type matches the
exception named after the except keyword, the except clause
is executed, and then execution continues after the try
statement.

4. If an exception occurs which does not match the exception
named in the except clause, it is passed on to outer try
statements; if no handler is found, it is an unhandled
exception and execution stops with a message as shown above.

Try statement

» A try statement may have more than one except clause, to
specify handlers for different exceptions.

» At most one handler will be executed.

» Handlers only handle exceptions that occur in the
corresponding try clause, not in other handlers of the same try

statement.
1 except (RuntimeError, TypeError, NameError):
2 pass

Last Try statement

» The last except clause may omit the exception name(s), to
serve as a wildcard.

1import sys
2

3try:
4 f = open('myfile.txt")
5 s = f.readline ()

6 i int(s.strip())
7 except OSError as err:

8 print("OS error: {0}".format(err))

9except ValueError:

10 print (" Could not convert data to an integer.”)
11 except:

12 print (" Unexpected error:”, sys.exc_info()[0])

13 raise




Else Statement

» The try ...except statement has an optional else clause,
which, when present, must follow all except clauses. It is
useful for code that must be executed if the try clause does
not raise an exception.

1 for arg in sys.argv|[1l:]:

2 try:

3 f = open(arg, 'r')
4 except OSError:

5 print ('cannot open', arg)
6 else:

7 print(arg, 'has', len(f.readlines()), 'lines ")
8 f.close()

Exception details

» When an exception occurs, it may have an associated value,
also known as the exceptions argument.

» The presence and type of the argument depend on the
exception type.

1try

2 raise Exception('spam', 'eggs')

3 except Exception as inst:

4 print (type(inst)) # the exception instance

5 print(inst.args) # arguments stored in .args

6 print(inst) # __str__ allows args to be
printed directly ,

7 # but may be overridden in

exception subclasses

8 X, y = inst.args # unpack args

9 print('x =", x)

10 print('y =", y)

Raising Exceptions

» The raise statement allows the programmer to force a
specified exception to occur.

» The sole argument to raise indicates the exception to be
raised.

1>>> raise NameError('HiThere')

2 Traceback (most recent call last):

3 File "<stdin >", line 1, in <module>
4 NameError: HiThere

User Defined Exceptions

» Programs may name their own exceptions by creating a new
exception class.

» Exceptions should typically be derived from the Exception
class, either directly or indirectly.

1 class Error(Exception):
2 """ Base class for exceptions in this module.
3 pass

noaon




User Defined Exceptions: An Example

1 class InputError(Error):

2 """ Exception raised for errors in the input.

3

4 Attributes:

5 expression — input expression in which the error
occurred

6 message — explanation of the error

.

8

9 def __init__(self, expression, message):

10 self . expression = expression

11 self . message = message

User Defined Exceptions: An Example

1 class TransitionError(Error):

2 """ Raised when an operation attempts a state transition
that's not

3 allowed .

4

5 Attributes:

6 previous — state at beginning of transition

7 next — attempted new state

8 message — explanation of why the specific

transition is not allowed

9

10

11 def __init__(self, previous, next, message):

12 self . previous = previous

13 self . next = next

14 self . message = message

Clean Up Actions

» The try statement has another optional clause which is
intended to define clean-up actions that must be executed
under all circumstances.

1try:
2 raise KeyboardInterrupt
3finally:

4 print ('Goodbye, world!")

Clean Up Actions; An Example

1def divide(x, vy)

2 try:

3 result = x / vy

4 except ZeroDivisionError:

5 print(”" division by zero!”)

6 else:

7 print (" result is”, result)

8 finally:

9 print(” executing finally clause”)
10>>> divide (2, 1)

11 result is 2.0

12 executing finally clause

13>>> divide (2, 0)

14 division by zero!

15 executing finally clause

16>>> divide ("27, "1")

17 executing finally clause

18 Traceback (most recent call last):

19 File "<stdin >", line 1, in <module>
20 File "<stdin >", line 3, in divide

21 TypeError: unsupported operand type(s) for /: 'str

str!

1

and




