Principles of Computer Science II Introduction to Graph Theory

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 20

A little bit of Chess

- ► Knights move using a particular pattern.
- Knights can move two steps in any of four directions (left, right, up, and down) followed by one step in a perpendicular direction,
- Two points are connected by a line if moving from one point to another is a valid knight move.

A Chess Puzzle

- ► Two white and two black knights on a 3 × 3 chessboard.
- ► Two Knights cannot occupy the same square.
- ▶ Starting from the top configuration,
- Can they move, using the usual chess knights moves,
- ► To occupy the bottom configuration?

Chess Diagrams

- ► A Chess Diagram is used to represent movements of chess pieces on the board.
- \triangleright Example of a 3 \times 3 chessboard.
- ► Two points are connected by a line if moving from one point to another is a valid knight move.

Chess Diagrams - Equivalent Representations

- ► An equivalent representation of the resulting diagram.
- ▶ Now it is easy to see that knights move around a "cycle".
- Every knight's move corresponds to moving to a neighboring point in the diagram – clockwise or counterclockwise
- white-white-black-black cannot be transformed into white-black-white-black

Chess Diagrams & Graphs

- ▶ Chess Diagrams are examples of *graphs*.
- ▶ The points are called vertices and lines are called edges.
- ► A simple graph of five vertices and six edges.
- ▶ We denote a graph by G = G(V, E), where
 - V represents the set of vertices

$$V = \{a, b, c, d, e\}$$

E represents the set of edges

$$E = \{(a, b), (a, c), (b, c), (b, d), (c, d), (c, e)\}$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 夕

Hydrocarbons as Graphs and Structural Isomers

Basic Definitions

- ▶ We denote |V| = n the number of vertices.
- ▶ We denote |E| = m the number of edges.
- Two vertices u, v are called adjacent or neighboring vertices if there exists an edge e = (u, v).
- \blacktriangleright We say that edge e is incident to vertices u and v.
- ightharpoonup We say that vertices u and v are incident to edge e.
- ightharpoonup A loop is an edge from a node to itself: (u, u).
- Two or more edges that have the same endpoints (u, v) are called multiple edges.
- ► The graph is called simple if it does not have any loops or multiple edges.

4□ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q (

Degree of the Vertex

- The number of edges incident to a given vertex v is called the degree of the vertex and is denoted d(v).
- ▶ For every graph G = G(V, E), $\sum_{u \in V} d(u) = 2 \cdot |m|$.
- Notice that an edge connecting vertices v and w is counted in the sum twice: first in the term d(v) and again in the term d(w).

Directed & Undirected Graphs

- Many Bioinformatics problems make use of directed graphs.
- ► An edge can be undirected or directed.
- An undirected edge e is considered an unordered pair, in other words we assume that (u, v) and (v, u) are the same edge.
- ▶ A directed edge e = (u, v) and e' = (v, u) are different edges.
- ▶ If the edges have a direction, the graph is directed (digraph).
- ▶ If a graph has no direction, it is referred as undirected.

イロト イ部ト イミト イミト 一度

Directed Graphs

- ▶ In directed graphs, each vertex *u* has:
 - ightharpoonup indegree(u) the number of incoming edges,
 - ightharpoonup outdegree(u) the number of outgoing edges.
- ▶ For every directed graph G = G(V, E),

$$\sum_{u \in V} indegree(u) = \sum_{u \in V} outdegree(u)$$

Subgraphs & Complete Graphs

- A subgraph G' of G consists of a subset of V and E. That is, G' = (V', E') where $V' \subset V$ and $E' \subset E$.
- A spanning subgraph contains all the nodes of the original graph.
- ► If all the nodes in a graph are pairwise adjacent, the graph is called complete.

Triangles, Walks, Trails, Paths & Cycles

- A triangle in an undirected graph is a triplet (u, v, w), where $u, v, w \in V$ such that $(u, v), (v, w), (w, u) \in E$.
- ► A walk is a sequence of vertices and edges of a graph Vertex can be repeated. Edges can be repeated.
- ► Trail is a walk in which no edge is repeated.
- Path is a trail in which no vertex is repeated.
- ▶ Paths that start and end at the same vertex are referred to as cycles.

Paths

- A path of length k is a sequence of nodes (v_0, v_1, \dots, v_k) , where we have $(v_i, v_{i+1}) \in E$.
- ▶ If $v_i \neq v_j$ for all $0 \leq i < j \leq k$ we call the path simple.
- ▶ If $v_0 = v_k$ for all $0 \le i < j \le k$ and $v_0 = v_k$ the path is a cycle.
- A path from node u to node v is a path (v_0, v_1, \ldots, v_k) such that $v_0 = u$ and $v_k = v$.

Graph Connectivity

- Two nodes u and v are connected if there is a path from u to v.
- ▶ A graph is called connected if all pairs of vertices can be connected by a path, otherwise we say that the graph is disconnected.
- ► A graph is called **complete** if there is an edge between every two vertices.

Graph Connectivity

▶ Disconnected graphs can be decomposed into a set of one or more connected components.

Forests & Trees

- A simple graph that does not contain any cycles is called a forest.
- A forest that is connected is called a tree.
- ▶ A tree has n-1 edges.
- Any two of the following three statements imply that a graph is a tree (and thus they also imply the third one):
 - 1. The graph has n-1 edges.
 - 2. The graph does not contain any cycles.
 - 3. The graph is connected.

Representation of Graphs

- ightharpoonup Two standard ways to represent a graph G(V, E):
 - 1. A collection of adjacency lists.
 - Usually prefered for sparse graphs.
 - Sparse graph: |E| is much less than $|V|^2$.
 - 2. An adjacency matrix.
 - ► Usually prefered for dense graphs.
 - ▶ Dense graph: |E| is close to $|V|^2$.

Adjacency List

- Adjacency List Representation
- ightharpoonup Consists of an array Adj of |V| lists, one for each vertex in V.
- For each $u \in V$, the adjacency list Adj[u] contains all the vertices adjacent to u in G.
- ► The vertices are stored in arbitrary order.

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
1 2 3	0	1	0	1	0
4	0 1 0 0 0	1	1	0	1
5	1	1	0	1	0

Adjacency Matrix

- \triangleright Adjacency Matrix Representation of G(V, E)
- ▶ We assume that vertices are numbered 1, 2, ... |V|.
- ▶ The matrix $|V| \times |V|$ matrix.
- $ightharpoonup A = (a_{i,j})$, where

$$a_{i,j} = \begin{cases} 1, & \text{if } (i,j) \in E \\ 0, & \text{otherwise.} \end{cases}$$

Adjacency List and Adjacency Matrix Examples

► Adjacency Matrix Representation

