Principles of Computer Science II

Introduction to Graph Theory

Ioannis Chatzigiannakis

Sapienza University of Rome
Lecture 20

A Chess Puzzle

- Two white and two black knights on a 3×3 chessboard.
- Two Knights cannot occupy the same square.
- Starting from the top configuration,
- Can they move, using the usual chess knights moves,
- To occupy the bottom configuration?

A little bit of Chess

- Knights move using a particular pattern.
- Knights can move two steps in any of four directions (left, right, up, and down) followed by one step in a perpendicular direction,
- Two points are connected by a line if moving from one point to another is a
 valid knight move.

Chess Diagrams

- A Chess Diagram is used to represent movements of chess pieces on the board.
- Example of a 3×3 chessboard.
- Two points are connected by a line if moving from one point to another is a valid knight move.

Chess Diagrams - Equivalent Representations

- An equivalent representation of the resulting diagram.
- Now it is easy to see that knights move around a "cycle".
- Every knight's move corresponds to moving to a neighboring point in the diagram - clockwise or counterclockwise
- white-white-black-black cannot be transformed into white-black-white-black

Hydrocarbons as Graphs and Structural Isomers

Methane

Ethane

Butane

Isobutane

Chess Diagrams \& Graphs

- Chess Diagrams are examples of graphs.
- The points are called vertices and lines are called edges.
- A simple graph of five vertices and six edges.
- We denote a graph by $G=G(V, E)$, where
- V represents the set of vertices

$$
V=\{a, b, c, d, e\}
$$

- E represents the set of edges

$$
E=\{(a, b),(a, c),(b, c),(b, d),(c, d),(c, e)\}
$$

Basic Definitions

- We denote $|V|=n$ - the number of vertices.
- We denote $|E|=m$ - the number of edges.
- Two vertices u, v are called adjacent or neighboring vertices if there exists an edge $e=(u, v)$.
- We say that edge e is incident to vertices u and v.
- We say that vertices u and v are incident to edge e.
- A loop is an edge from a node to itself: (u, u).
- Two or more edges that have the same endpoints (u, v) are called multiple edges.
- The graph is called simple if it does not have any loops or multiple edges.

Degree of the Vertex

- The number of edges incident to a given vertex v is called the degree of the vertex and is denoted $d(v)$.
- For every graph $G=G(V, E), \sum_{u \in V} d(u)=2 \cdot|m|$.
- Notice that an edge connecting vertices v and w is counted in the sum twice: first in the term $d(v)$ and again in the term $d(w)$.

Directed \& Undirected Graphs

- Many Bioinformatics problems make use of directed graphs.
- An edge can be undirected or directed.
- An undirected edge e is considered an unordered pair, in other words we assume that (u, v) and (v, u) are the same edge.
- A directed edge $e=(u, v)$ and $e^{\prime}=(v, u)$ are different edges.
- If the edges have a direction, the graph is directed (digraph).
- If a graph has no direction, it is referred as undirected.

Subgraphs \& Complete Graphs

- A subgraph G^{\prime} of G consists of a subset of V and E. That is, $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subset V$ and $E^{\prime} \subset E$.
- A spanning subgraph contains all the nodes of the original graph.
- If all the nodes in a graph are pairwise adjacent, the graph is called complete.

Triangles, Walks, Trails, Paths \& Cycles

- A triangle in an undirected graph is a triplet (u, v, w), where $u, v, w \in V$ such that $(u, v),(v, w),(w, u) \in E$.
- A walk is a sequence of vertices and edges of a graph - Vertex can be repeated. Edges can be repeated.
- Trail is a walk in which no edge is repeated.
- Path is a trail in which no vertex is repeated.
- Paths that start and end at the same vertex are referred to as cycles.

Graph Connectivity

- Two nodes u and v are connected if there is a path from u to v.
- A graph is called connected if all pairs of vertices can be connected by a path, otherwise we say that the graph is disconnected.
- A graph is called complete if there is an edge between every two vertices.

Paths

- A path of length k is a sequence of nodes $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$, where we have $\left(v_{i}, v_{i+1}\right) \in E$.
- If $v_{i} \neq v_{j}$ for all $0 \leq i<j \leq k$ we call the path simple.
- If $v_{0}=v_{k}$ for all $0 \leq i<j \leq k$ and $v_{0}=v_{k}$ the path is a cycle.
- A path from node u to node v is a path $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ such that $v_{0}=u$ and $v_{k}=v$.

Graph Connectivity

- Disconnected graphs can be decomposed into a set of one or more connected components.

Forests \& Trees

- A simple graph that does not contain any cycles is called a forest.
- A forest that is connected is called a tree.
- A tree has $n-1$ edges.
- Any two of the following three statements imply that a graph is a tree (and thus they also imply the third one):

1. The graph has $n-1$ edges.
2. The graph does not contain any cycles.
3. The graph is connected.

Representation of Graphs

- Two standard ways to represent a graph $G(V, E)$:

1. A collection of adjacency lists.

- Usually prefered for sparse graphs.
- Sparse graph: $|E|$ is much less than $|V|^{2}$

2. An adjacency matrix.

- Usually prefered for dense graphs.
- Dense graph: $|E|$ is close to $|V|^{2}$.

$$
\begin{array}{l|lllll|}
& 1 & 2 & 3 & 4 & 5 \\
& 0 & 1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 1 & 1 \\
3 & 0 & 1 & 0 & 1 & 0 \\
4 & 0 & 1 & 1 & 0 & 1 \\
5 & 1 & 1 & 0 & 1 & 0 \\
\hline
\end{array}
$$

Adjacency Matrix

- Adjacency Matrix Representation of $G(V, E)$
- We assume that vertices are numbered $1,2, \ldots|V|$.
- The matrix $|V| \times|V|$ matrix.
- $A=\left(a_{i, j}\right)$, where

$$
a_{i, j}= \begin{cases}1, & \text { if }(i, j) \in E \\ 0, & \text { otherwise }\end{cases}
$$

1	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Adjacency List and Adjacency Matrix Examples

- Adjacency Matrix Representation

