
Principles of Computer Science II
Virtualization

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 9

Virtualization
I Virtualization deals with “extending or replacing an existing

interface so as to mimic the behavior of another system”
I Virtual system examples:

I virtual private network,
I virtual memory,
I virtual machine,
I . . .

Starting Point: Physical System
I Physical Hardware

I Processors, Memory, I/O
devices, . . .

I Physical resources often
underutilized

I Periods that are
over-utilized

I Software:

I Tightly coupled to
Hardware,

I Single active OS,
I OS controls Hardware

What is a Virtual Machine?
I Hardware-level Abstraction

I Virtual Hardware: Processors,
Memory, I/O devices, . . .

I Encapsulates all OS and
application state.

I Virtualization Software:

I Extra level of indirection
decouples hardware and OS,

I Multiplexes physical hardware
across multiple “guest” VMs,

I Strong isolation between VMs,
I Manages physical resources,

improves utilization.

Virtual Machine Isolation
I Secure Multiplexing:

I Run multiple VMs on single
physical host,

I Processor hardware isolates VMs.

I Strong Guarantees:

I Software bugs, crashes, viruses
within one VM cannot affect
other VMs

I Performance Isolation:

I Partition system resources,
I Example: VirtualBox controls for

reservation, limit, shares.

Virtual Machine Encapsulation
I Entire VM in a file:

I OS, applications, data;
I Memory and device state.

I Snapshots and Clones:

I Capture VM state on the fly and
restore to point-in-time,

I Rapid system provisioning,
backup, remote mirroring.

I Easy Content Distribution:

I Pre-configured apps, demos.
I Virtual Appliances.

Virtual Machine Compatibility
I Hardware Independent:

I Physical hardware hidden by
virtualization layer,

I Standard virtual hardware
exposed to VM.

I Create Once, Run Anywhere:

I No configuration issues,
I Migrate VMs between hosts.

I Legacy Virtual Machines:

I Run legacy OS on new platform.

Common Uses
I Test and Development

I Rapidly provision test and development servers.
I Store libraries of pre-configured test machines.

I Business Contunuity
I Reduce cost and complexity by encapsulating entire systems

into single files
I Replicated and restored on demand into any target system.

I Enterprise Desktop
I Secure unmanaged PCs without compromising end-user

autonomy by layering a security policy in software around
desktop virtual machines.

Common Uses
I Run legacy software on non-legacy hardware
I Run multiple operating systems on the same hardware
I Create a manageable upgrade path
I Manage outages (expected and unexpected) dynamically

Virtualized Data Centers

Reduce costs by consolidating services onto the fewest number of
physical machines

Non-virtualized Data Centers
I Too many servers for too little work
I High costs and infrastructure needs

I Maintenance
I Networking
I Floor space
I Cooling
I Power
I Disaster Recovery

Dynamic Data Centers
I Virtualization helps us break the “one service per server”

model
I Consolidate many services into a fewer number of machines

when workload is low, reducing costs
I Conversely, as demand for a particular service increases, we

can shift more virtual machines to run that service
I We can build a data center with fewer total resources, since

resources are used as needed instead of being dedicated to
single services

Towards Serverless Computing Function as a Service

Kernel Subsystems
I File system

I Deals with all input and output
I Includes files and terminals
I Integration of storage devices

I Process management
I Deals with programs and program interaction
I How processes share CPU, memory and signals
I Scheduling
I Interprocess Communication
I Memory management

I UNIX variants have different implementations of different
subsystems.

What is a Shell?
I The user interface to the operating system
I Functionality:

I Execute other programs
I Manage files
I Manage processes

I A program like any other
I Executed when you “open a Terminal”

Shell Interactive Use
I The # is called the “prompt”
I In the prompt we type the name of the command and press

“Enter”
I The prompt allows

I Command history
I Command line editing
I File expansion (tab completion)
I Command expansion
I Key bindings
I Spelling correction
I Job control

Prompt: The Command Line

date

Sat Apr 21 16:47:30 GMT 2007

Error Handling
I If we type a wrong command, an error message appears

Prompt: The Command Line

datee

datee: no such file or directory

I The error message states that either the file or the folder
(directory) was not found
I In the prompt all commands are assumed to be connected to a

file . . .
I The arrow keys ↑ ↓ allow to look-up previous commands
I The arrow keys ← → allow to move within the same

command line

Terminating Command Execution
I We can interrupt the execution of a command by pressing

ctrl-c
I We can “freeze” the output of the execution of a command

by pressing ctrl-s
I To “un-freeze” the output of a command we use ctrl-q
I Note – only the output is frozen not the actual execution

I To close a terminal we use ctrl-d
I We may need to press multiple times ctrl-q
I All programs currently running will terminate

Manual Pages
I The command man allows to access the manual pages
I Manual pages are organized in categories

1. Commands – ls, cp, grep
2. System Calls – fork, exit
3. Libraries
4. I/O Files
5. File Encoding Types
6. Games
7. Miscellaneous
8. Administrator’s Commands
9. Documents

I We can request a page from a specific category
man [category] [topic]

Manual Pages File System
I All system entities are abstracted as files

I Folders and files
I Commands and applications
I I/O devices
I Memory
I Process communication

I The file system is hierarchical
I Folders and files construct a tree structure
I The root of the tree is represented using the /

I The actual structure of the tree depends on the distribution of
Linux
I Certain folders and files are standard across all Linux

distributions

File System Example Standard Folders
I /bin – Basic commands
I /etc – System settings
I /usr – Applications and Libraries
I /usr/bin – Application commands
I /usr/local – Applications installed by the local users
I /sbin – Administrator commands
I /var – Various system files
I /tmp – Temporary files
I /dev – Devices
I /boot – Files needed to start the system
I /root – Administrator’s folder

Example of File Metadata

ls -la

lrwxrwxrwx 1 bin operator 2880 Jun 1 1993 bin

-r--r--r-- 1 root operator 448 Jun 1 1993 boot

drwxr-sr-x 2 root operator 11264 May 11 17:00 dev

drwxr-sr-x 10 root operator 2560 Jul 8 02:06 etc

drwxrwxrwx 1 bin bin 7 Jun 1 1993 home

lrwxrwxrwx 1 root operator 7 Jun 1 1993 lib

drwxr-sr-x 2 root operator 512 Jul 23 1992 mnt

drwx------ 2 root operator 512 Sep 26 1993 root

drwxr-sr-x 2 bin operator 512 Jun 1 1993 sbin

drwxrwxrwx 6 root operator 732 Jul 8 19:23 tmp

drwxr-xr-x 27 bin bin 1024 Jun 14 1993 usr

drwxr-sr-x 10 root operator 512 Jul 23 1992 var

Navigating the File System

I Each folder contains two
“virtual” folders
ls -la

. ..

I The single dot represents
the same folder
./myfile ⇒ myfile

I The two dots represent
the “parent” folder in
the tree

File System Security
I For each file we have 16 bit to define authorization

I 12 bit are used by the operator
I They are split in 4 groups of 3 bit – 1 octal – each

I The first 4 bit cannot be changed
I They characterize the type of the file (simple file, folder,

symbolic link)
I When we list the contents of a folder the first letter is used to

signify:
- – simple files
d – folders
l – symbolic links

I The next 3 bit are known as the s-bits and t-bit
I The last three groups are used to define the access writes for

read ’r’, write ’w’ and execute ’x’
I For the file owner, users of the same group, and all other users.

File System Permissions Examples

Type Owner Group Anyone

d rwx r-x ---

I Folder
I The owner has full access
I All users that belong to the group defined by the file can read

and execute the file – but not modify the contents
I All other users cannot access the file or execute it
I To access a folder we use the command cd given that we have

permission to execute ’x’

Changing the File Permissions

Examples of File Permissions

Binary Octal Text

001 1 x

010 2 w

100 4 r

110 6 rw-

101 5 r-x

- 644 rw-r--r--

I The command chmod allows to modify the permissions
I There are 2 way to define the new permissions

1. Defining the 3 Octal – e.g., 644
2. By using text – e.g., a+r

Some Examples of chmod

make read/write-able for everyone

chmod a+w myfile

add the ’execute’ flag for directory

chmod u+x mydir/

open all files for everyone

chmod 755 *

make file readonly for group

chmod g-w myfile

descend recursively into directory opening all files

chmod -R a+r mydir/

Changing the Owner and Group of a File
I The command chown allows to change the owner of a file
I The command chgrp allows to change the group of a file

give ownership to ichatz

chown ichatz myfile

set group to students

chgrp students mydir/

give ownership to pcs and group to students

chgrp pcs:students myfile mydir/

descend recursively into directory opening all files

chown -R ichatz mydir/

Symbolic Links
I The file system enables to create symbolic links
I Two types are provided

I Symbolic link
I Hard link

I The contents and metadata of the original file are used for all
operations

create a symbolic link to a directory

ln -s /var/log ./log

ls -lg

lrwxrwxrwx 1 operator 8 Apr 25 log -> /var/log

I The contents and metadata of the original file are used for all
operations
I Except for deletion.

Examples of Symbolic Links Access Dates
I For each file the system keeps track of

I Date of last usage/access
I Date of last change

check last usage time

ls -lu

drwxrwxrwx 1 bin bin 7 Apr 25 1993 home

lrwxrwxrwx 1 root operator 7 Apr 25 1993 lib

drwx------ 2 root operator 512 Mar 30 1993 root

check last change time

ls -lc

drwxrwxrwx 1 bin bin 7 Apr 25 1993 home

lrwxrwxrwx 1 root operator 7 Oct 27 1993 lib

drwx------ 2 root operator 512 Oct 27 1993 root

