UNIX Pipes
» General idea: The input of one program is the output of the
other, and vice versa.

Principles of Computer Science I
Unix Programming Shell

loannis Chatzigiannakis

Sapienza University of Rome
» Both programs run at the same time.
Lecture 12

UNIX Pipes UNIX Pipes

» Often, only one end of the pipe is used. » Commands produce an output — using the descriptor > the
output is redirected to a file
1s > filelist
standard in A new file is created under the name filelist
If the file already exists, the new file will replace the old one.
We can use the descriptor >> to redirect the output to an
existing file
1s -1t /root/doc >> /root/filelist
The commands that require input — using the descriptor < the
input is redirected from a file
sort < /root/filelist

» This can be done using intermediate files.

UNIX Pipes
» File approach: Run first program, save output into file.
» Run second program, using file as input.

-

» Unnecessary use of the disk:

> Slower,

» Can take up a lot of space.
» Makes no use of multi-tasking.

-

UNIX Pipes
» The output of a process is redirected as input to another
process.

—

» The redirection is done using the descriptor |
1s | sort — sorting the files of a folder
1s /root | wc -1 - counting files

» Multiple pipes are often chained together.

UNIX Pipes

> What's the difference?

» Both commands send input to command from a file instead of
the terminal:
cat file | command
command < file

» An extra process !
cat file | command

--l—0

command < file

-l

UNIX Pipes

» What if a process tries to read data but nothing is available?
» UNIX puts the reader to sleep until data available.
» What if a process cannot keep up reading from the process
that’s writing?
» UNIX keeps a buffer of unread data.
> This is referred to as the pipe size.
> If the pipe fills up, UNIX puts the writer to sleep until the
reader frees up space (by doing a read).
» Multiple readers and writers possible with pipes.

UNIX Pipes

» Examples of filters:
> Sort
> Input: lines from a file.
» Output: lines from the file sorted
» Grep
> Input: lines from a file.
> Output: lines that match the argument
> Sed
> Programmable stream editor.

Processes

» We may execute commands in series by using the delimeter ;
» Commands are executed one by one. When the first is
completed, the next one starts. When the last command is
completed, we get a new prompt
> # who | sort ; date
» We may execute commands in the background using the
delimeter &
» The commands are executed and a new prompt is provided
immediately
> # pr junk | lpr &
> The execution of a command results to a new process
> The command ps shows up in the list of active processes
» The command wait is active until all the commands executed
using the delimeter & complete.

List of processes

ps -a
PID TTY CMD
106 c1 :01 -sh
4114 co 0:00 /bin/sh /usr/bin/packman
2114 co :00 -sh
6762 cl :00 ps -a
87 c2 :00 getty
90 ¢c3 :00 getty

Parameter a — list all the commands created by consoles
Column PID — unique ID of the process

Column TTY - the console ID that created the process
Column TIME - total execution time

Column CMD — the name of the command

Process management
» To terminate a process we use the command kill [PID]
» We may change the priority of a process
> prefix nice
nice pr junk | lpr &
» We may delay the execution of a command
> prefix at

at 1500

1s -1 / /root /dir | wc > allfiles

pr allfiles | lpr ; date > lpr-endtime &
date > lpr-starttime

“D

at: /usr/spool/at/07.111.1500.67 created
#

Introduction to Regular Expressions (1)
> A regular expression (regex) describes a set of possible input
strings.
» Regular expressions descend from a fundamental concept in
» Computer Science called finite automata theory
» Regular expressions are endemic to Unix
vi, ed, sed, and emacs
awk, tcl, perl and Python
grep, egrep, fgrep
compilers

Introduction to Regular Expressions (2)

» The simplest regular expressions are a string of literal
characters to match.

» The string matches the regular expression if it contains the
substring.

Introduction to Regular Expressions (3)

regular expression

UNIX Tools ro.

match

UNIX Tools su.

match

UNIX Tools is okay.

no match

Introduction to Regular Expressions (4)

» A regular expression can match a string in more than one

place.
regular expression ——— HEE H

Scr from the

match 1 match 2

Introduction to Regular Expressions (5)
» The . regular expression can be used to match any character.

regular expression ——

e to poEﬁ—_bn-

match 1 match 2

Character Classes (1)

» Character classes [| can be used to match any specific set of
characters.

bead a|brat|on a|boaﬂ

match 1 match 2 match 3

Character Classes (2)

» Character classes can be negated with the [*] syntax.
regular expression —— b [A e O] H

on a boat

match

Character Classes (3)
> [aeiou] will match any of the characters a, e, i, o, or u
» [kK]orn will match korn or Korn
> Ranges can also be specified in character classes
» [1— 9] is the same as [123456789]
> [abcde] is equivalent to [a — €]
» You can also combine multiple ranges
> [abcde123456789] is equivalent to [a — el — 9]
» Note that the - character has a special meaning in a character
class but only if it is used within a range,
» [—123] would match the characters -, 1, 2, or 3

Named Character Classes
» Commonly used character classes can be referred to by name
(alpha, lower, upper, alnum, digit, punct, cntrl)
Syntax [: name :]
[a— zA — Z] is equivalent [[: alpha :]]
[a—2zA— Z0 — 9] is equivalent [[: alnum :]]
[45a — z] is equivalent [45[: lower :]]
Important for portability across languages

Anchor Characters

» Anchors are used to match at the beginning or end of a line
(or both).

> ~ means beginning of the line

> $ means end of the line

regular expression ——— E [eor] E

M a brat on a boat

match

regular expression ———» E [eor]

beat a brat on a |[boat

match

Aword$ ~$

Repetition

> The * is used to define zero or more occurrences of the single
regular expression preceding it.

regular expression ———»

I got mail,

match

L
regular expression ——— Hanu

For me to on.

match

L

Match Length

» A match will be the longest string that satisfies the regular

expression.

Scrapple| from the| apple

| T

Repetition Ranges
Ranges can also be specified
{ } notation can specify a range of repetitions for the
immediately preceding regex
{n} means exactly n occurrences
{n.} means at least n occurrences
{n.m} means at least n occurrences but no more than m
occurrences
Example:
{0,} same as .*
a{2,} same as aaa*

Subexpressions
> If you want to group part of an expression so that * or { }
applies to more than just the previous character, use ()
notation
Subexpresssions are treated like a single character
a* matches 0 or more occurrences of a
abc* matches ab, abc, abec, abecc, ...
(abc)* matches abc, abcabc, abcabcabe, ...
(abc)2,3 matches abcabc or abcabcabe

Global Regular Expressions Print — grep Syntax

> grep comes from the ed (Unix text editor) search command » Regular expression concepts we have seen so far are common
“global regular expression print" or g/re/p to grep

» This was such a useful command that it was written as a > grep: \(and \), \{ and \}
standalone utility

» There are two other variants, egrep and fgrep that comprise
the grep family
grep is the answer to the moments where you know you want
the file that contains a specific phrase but you can’t
remember its name

Introduction to sed (1) Introduction to sed (2)
sed: Stream Editor: > Sed is very useful for simple operations, such as
> replace or remove patterns,
> when the operation is not necessarily related with the
formatting of the input.
» We wish to repeat the operation over all the lines of the input
text.

Input from a file or from a pipe

Output to a file or to a pipe

Filters and edits the input text and produces the modified text
as output

Examines input line-by-line, searches for a pattern and makes
a replace

We usually use it when we know how content is structured
(lines, columns)

Main Concepts

pattern space = the data we wish to edit (data buffer)

while (readline) {

. read the input one line at a time
. for each line, sed executes a series of commands on the

pattern space

. outputs the resulting/modified text

Command Syntax
sed <options> '<address><command>'

. address: the line number of the input text, the pattern to
search, contained within slashes (/pattern/). Defines where
the command will be applied, in which lines or to all lines.

. The pattern is described using regular expressions,

. We can provide a range of lines as comma separated values to
execute the command over a given range of lines, including
the lines defined.
| = NOT (to apply the command to all lines excluding the
range provided)

Common Commands

c\
d
i\
[

w
-e
-f SCRIPT_FILE

-n

Insert text after current line
Change current text into (new text)
Delete text

Insert text before current line
Print text

Read file

Search and replace text

Write to file

To set multiple commands

To use a sed file with commands
Print only the p commands

Replace
Common usage:
sed s 'pattern/replacement/<flags>'
> pattern: search pattern
> replacement: the string with which to replace the pattern
> flags (optional):
» n (number): number of occurance to replace
> g (global): replace all occurances
> p (print): print the content of the pattern space

Example file
bash-3.1$ cat -n example.sed

This is the first line of an example text.

It is a text with erors.

Lots of erors.

So many erors, all these erors are making me sick.
This is a line not containing any errors.

This is the last line.

Usage Example 1

bash-3.1$ sed 's/erors/errors/g' example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these errors are making me sick.
This is a line not containing any errors.

This is the last line.

What if we replace the command g with number 27
What if we remove command g completely?

Example 2
" Start of line - $ End of line
bash-3.1$ sed 's/"/> /' example.sed

This is the first line of an example text.

It is a text with erors.

Lots of erors.

So many erors, all these erors are making me sick.
This is a line not containing any errors.

This is the last line.

What if we replace the command of ~ with § ?

Example 3

bash-3.1$ sed -e 's/erors/errors/g' -e
's/last/final/g' example.sed

(or, alternatively)

sed 's/erors/errors/g; s/last/final/g' example.sed

This is the first line of an example text.

It is a text with errors.

Lots of errors.

So many errors, all these errors are making me sick.
This is a line not containing any errors.

This is the final line.

Other special characters One more example
» The characters _or (comma) may replace / for improved bash-3.1$ sed 's/[" []#/(&)/' example.sed
readability
> \: escape character (This) is the first line of an example text.
> & Signifies the pattern found (always referring to the current (It) is a text with erors.
line) (Lots) of erors.
> Take special care on those symbols that are part of the regular (So) many erors, all these erors are making me sick.
expression (This) is a line not containing any errors.
(This) is the last line.

What if the pattern was
[a-z]\+\. ?
s/[7] ?

Yet another example Focus on specific lines (1)

We may focus the changes only in specific lines, declaring the lines
with their number.

bash-3.1$ sed '1,3 s/erors/errors/g' example.sed

Print only lines that match the pattern after changing it, based on

7 This is the first line of an example text.
the conditions set:

It is a text with errors.

bash-3.1$ sed -n 's/erors/errors/gp' example.sed Lots of errors.

So many erors, all these erors are making me sick.
It is a text with errors. This is a line not containing any errors.

Lots of errors. This is the last line.

So many errors, all these errors are making me sick.

What if there was a ! before p (print)?

Focus on specific lines (2)
We can do the same by providing the common pattern d all lines
bash-3.1$ sed '/"T/ s/\ is/\ was/g' example.sed 6d line 6

/°8/d all empty lines

This was the first line of an example text. /~\./d all lines starting with .

It is a text with errors. 1,10d lines 1 -10

Lots of errors. 1,/°$/d from the first line until the first empty line

So many errors, all these erors are making me sick. /~$/,$d from the first empty line

This was a line not containing any errors. until the last line

This was the last line. sed o AN/ AR /AT ~L AN/ a' file.py

What if we use the following command in a python file?
sed '/\/*/,/\¥\// s/.\+//" program.py

sed — extra examples
> Replace "foo” with "bar” only in lines containing "baz"

sed '/baz/s/foo/bar/g'
» Remove empty space from the stand and end of each line

sed 's/"[\tlx//;s/[\t1*$//'
> Add 5 spaces at the start of each line

sed 's/"/ A
» Remove all empty lines from a file

sed '/°$/d"

