Principles of Computer Science II

Introduction to Graph Theory

Ioannis Chatzigiannakis

Sapienza University of Rome
Lecture 18

Graph Definition

- We denote a graph by $G=G(V, E)$, where
- V represents the set of vertices
$V=\{a, b, c, d, e\}$
- E represents the set of edges $E=\{(a, b),(a, c),(b, c),(b, d),(c, d),(c, e)\}$

Basic Definitions

- We denote $|V|=n$ - the number of vertices.
- We denote $|E|=m$ - the number of edges.
- Two vertices u, v are called adjacent or neighboring vertices if there exists an edge $e=(u, v)$.
- We say that edge e is incident to vertices u and v.
- We say that vertices u and v are incident to edge e.
- A loop is an edge from a node to itself: (u, u).

Degree of the Vertex

- The number of edges incident to a given vertex v is called the degree of the vertex and is denoted $d(v)$.
- For every graph $G=G(V, E)$,

$$
\sum_{u \in V} d(u)=2 \cdot|m|
$$

- Notice that an edge connecting vertices v and w is counted in the sum twice: first in the term $d(v)$ and again in the term $d(w)$.

Subgraphs

- A subgraph G^{\prime} of G consists of a subset of V and E.

That is, $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where $V^{\prime} \subset V$ and $E^{\prime} \subset E$.

- A spanning subgraph contains all the nodes of the original graph.

Paths

- A path is a sequence of vertices and edges of a graph Vertices cannot be repeated. Edges cannot be repeated.
- A path of length k is a sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$, where we have $\left(v_{i}, v_{i+1}\right) \in E$.
- If $v_{i} \neq v_{j}$ for all $0 \leq i<j \leq k$ we call the path simple.
- If $v_{0}=v_{k}$ for all $0 \leq i<j \leq k$ and $v_{0}=v_{k}$ the path is a cycle.
- A path from vertex u to vertex v is a path $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ such that $v_{0}=u$ and $v_{k}=v$.

Shortest Paths

- A shortest path between vertices u and v is a path from u to v of minimum length.
- The distance $d(u, v)$ between vertices u and v is the length of a shortest path between u and v.
- If u and v are in different connected component then $d(u, v)=\infty$.

Graph Diameter

- The diameter D of a connected graph is the maximum (over all pairs of vertices in the graph) distance.

$$
D=\max _{(u, v): u, v \text { connected }} d(u, v)
$$

- If a graph is disconnected then we define the diameter to be the maximum of the diameters of the connected components.

(v)

Breadth-first Search

- Given a graph $G(V, E)$,
- and a distinguished source vertex u,
- breadth-first search systematically explores the edges of G to "discover" every vertex that is reachable from u.
- It computes the distance from u to each reachable vertex.
- It computes a spanning subgraph of G, the "breadth-first tree", with root u that contains all reachable vertices.
- For any vertex v reachable from u, the path in the breadth-first tree from u to v corresponds to a "shortest path" from u to v in G.

Example of Execution of Breadth-First Search Algorithm

Initial Graph

The graph contains 9 vertices, 14 edges
Vertex $\mathbf{1}$ is the source node.
Vertex $\mathbf{1}$ is discovered.
Vertices 2,5 are the frontier.
All other vertices are not discovered.

Example of Execution of Breadth-First Search Algorithm

Example of Execution of Breadth-First Search Algorithm

$1^{\text {st }}$ Round

Vertex 1 sends examines adjacent vertices.
Vertice 2,5 are discovered.
Vertices 3,4,7,8,9 are the frontier.

$2^{\text {nd }}$ Round

Vertices 3,4,7,8,9 are the discovered.

Example of Execution of Breadth-First Search Algorithm

Example of Execution of Breadth-First Search Algorithm

$3^{\text {rd }}$ Round

All vertices are discovered.

Bridges of Königsberg

Euler was interested in whether he could arrange a tour of the city in such a way that the tour visits each bridge exactly once

Final Graph

Breadth-first search tree constructed.

Bridge Problem

Find a tour through a city (located on n islands connected by m bridges) that starts on one of the islands, visits every bridge exactly once, and returns to the originating island.

Input: A map of the city with n islands and m bridges.
Output: A tour through the city that visits every bridge exactly once and returns to the starting island.

Transformation of the Map into a Graph

- Every island corresponds to a vertex.
- Every bridge corresponds to an edge.

\equiv

Hamilton's Game

Eulerian Cycle Problem

Find a cycle in a graph that visits every edge exactly once.

Input: A graph G.
Output: A cycle in G that visits every edge exactly once.

- Sir William Hamilton invented a game corresponding to a graph whose twenty vertices were labeled with the names of twenty famous cities.
- The goal is to visit all twenty cities in such a way that every city is visited exactly once before returning back to the city where the tour started.

Hamiltonian Cycle Problem
Find a cycle in a graph that visits every vertex exactly once．

Input：A graph G．
Output：A cycle in G that visits every vertex exactly once．

