
Principles of Computer Science II
Sorting Algorithms

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 4

Simple Statistics

def main():
sum = 0.0
count = 0
xStr = input("Enter a number (<Enter> to quit) >> ")
while xStr != "":

x = eval(xStr)
sum = sum + x
count = count + 1
xStr = input("Enter a number (<Enter> to quit) >>")

print("\nThe average of the numbers is", sum / count)

main()

Simple Statistics: Observations
I The program itself does not keep track of the numbers that

were entered – it only keeps a running total.
I We want to extend the program to compute not only the

mean, but also the median and standard deviation.

Median
The median is the data value that splits the data into equal-sized
parts.

Standard Deviation

s =

√
Σ(x̄ − xi)2

n − 1

Simple Statistics: Extensions

I We need to keep track of all the values inserted by the user

I We do not know how many variables the user will provide.

Lists

I Python provides List to store sequences of values
I Lists in python are dynamic.

I They grow/shrink on demand.

I Lists are mutable
I Values can change on demand
I Data type of individual items can change

Lists: Basic Examples

lst = [1,5,15,7]
print(lst)

lst[2] = 22
lst

lst[1] = "Hello"
lst

zeroes = [0] * 5
zerones = [0,1] * 3
zerones.append(2)

Lists: Operators
Operator Meaning

seq + seq Concatenation
seq * integer Repetition
seq[] Indexing
len(seq) Length
sec[:] Slicing
for var in sec: Iteration
(expr) in sec Membership (boolean)

Lists: Basic Examples

lst = lst + [22, 3]
len(lst)

15 in lst
3 in lst

sum = 0
for x in zerones:

sum += x
print(sum)

X = zerones
zerones.append(2)

Y = lst[1:3]
Z = lst[3:-1]
K = lst[1:-3]

Lists: Methods
Method Meaning

seq.append(x) Add element x to end of list.
seq.sort() Sort (order) the list. A comparison function may

be passed as a parameter.
seq.reverse() Reverse the list.
seq.index(x) Returns index of first occurrence of x.
seq.insert(i, x) Insert x into list at index i.
seq.count(x) Returns the number of occurrences of x in list.
seq.remove(x) Deletes the first occurrence of x in list.
seq.pop(i) Deletes the ith element of the list and returns its

value.

Lists: Basic Examples

lst = [3, 1, 4, 1, 5, 9]
lst.append(2)
lst

lst.sort()
lst

lst.reverse()

lst.index(4)

lst.insert(4, "Hello")

lst.count(1)

lst.remove(1)

lst.pop(3)

Simple Statistics: Modifications
I Collect input from user
I Store in a list

Simple Statistics: Modifications
I Collect input from user
I Store in a list

nums = []
x = input('Enter a number: ')
while x >= 0:

nums.append(x)
x = input('Enter a number: ')

Simple Statistics: Modifications
I Collect input from user
I Store in a list

nums = []
x = input('Enter a number: ')
while x >= 0:

nums.append(x)
x = input('Enter a number: ')

def mean(nums):
sum = 0.0
for num in nums:

sum = sum + num
return sum / len(nums)

Further Extensions

I How do we compute the standard deviation?

I Do we re-compute the mean?
I Inefficient for large collections

I Do we pass the mean as a parameter?
I Forced to invoke both functions sequentially

Further Extensions
I How do we compute the standard deviation?
I Do we re-compute the mean?

I Inefficient for large collections
I Do we pass the mean as a parameter?

I Forced to invoke both functions sequentially

def stdDev(nums, xbar):
sumDevSq = 0.0
for num in nums:

dev = xbar - num
sumDevSq = sumDevSq + dev * dev

return sqrt(sumDevSq/(len(nums)-1))

Median

I How do we compute the median?

I Pseudocode

1. sort the numbers into ascending order
2. if the size of the data is odd:
3. median = the middle value
4. otherwise median = the average of the two middle values
5. return median

Median
I How do we compute the median?
I Pseudocode

1. sort the numbers into ascending order
2. if the size of the data is odd:
3. median = the middle value
4. otherwise median = the average of the two middle values
5. return median

def median(nums):
nums.sort()
size = len(nums)
midPos = size / 2
if size % 2 == 0:

median = (nums[midPos] + nums[midPos-1]) / 2.0
else:

median = nums[midPos]
return median

Simple Statistics: New Version

def main():
print(\This program computes mean, median and standard deviation.")

data = getNumbers()
xbar = mean(data)
std = stdDev(data, xbar)
med = median(data)

print('\nThe mean is', xbar)
print('The standard deviation is', std)
print('The median is', med)

Range
I range creates a list of numbers in a specified range
I range([start,] stop[, step])
I When step is given, it specifies the increment (or decrement).

range(5)

range(5, 10)

range(0, 10, 2)

for i in range(0, len(lst), 2):
print lst[i]

Zipping Lists

lst = [1,5,15,7]
zerones = [0,1] * 3

k = zip(lst, zerones)

for (i,j) in k:
print (i,j)

Tuples

data = [("julius", 3),
("maria", 2),
("alice", 4)]

for (n, a) in data:
print("I met %s %s times" % (n, a))

data.sort()

Sorting in Python

list = [5, 6, 3, 7, 8, 11]
list.sort()

doubleList = [[8, 4, 5], [3, 8, 11], [4, 2, 19]]
doubleList.sort()

complexList = [('Alex', 5, M), ('Maria', 7, F),
('Katia', 1, F), ('Bruno', 2, M),
('Artemis', 1, F)]

complexList.sort()

I How do we sort with different criteria?

Lambda Functions
I Lambda is a tool for building functions, or more precisely, for

building function objects.
I Python has two tools for building functions: def and lambda.

Function declaration
def square_root(x): return math.sqrt(x)

def sum(x,y): return x + y

Lambda function
square_root = lambda x: math.sqrt(x)

sum = lambda x, y: x + y

Lambda vs Functions
When using Lambda makes sense?
I the function is fairly simple, and
I it is going to be used only once.

When using Functions makes sense?
I to reduce code duplication, or

If your application contains duplicate chunks of code in
various places, then you can put one copy of that code
into a function, and then call it from various places in
your code.

I to modularize code.
If you have a chunk of code that performs one well-defined
operation — but is really long and interrupts the readable
flow of your program.

What Can be expressed using Lambda

I If it does not return a value, it is not an expression and
cannot be put into a lambda.

I If you can imagine it in an assignment statement, on the
right-hand side of the equals sign, it is an expression and can
be put into a lambda.

What Can be expressed using Lambda
1. Assignment statements cannot be used in lambda – do not

return anything, not even None (null).
2. Simple things: mathematical operations, string operations, list

comprehensions, etc. are OK in a lambda.
3. Function calls are expressions. It is OK to put a function call

in a lambda, and to pass arguments to that function. Doing
this wraps the function call (arguments and all) inside a new,
anonymous function.

4. In Python 3, print became a function, so in Python 3+,
print(...) can be used in a lambda.

5. Functions that return None: like the print function in Python
3, can be used in a lambda.

6. Conditional expressions, return a value, and can be used in a
lambda.

Lambda Examples

lambda: a if some_condition() else b

lambda x: 'big' if x > 100 else 'small'

out=lambda *x:print(" ".join(map(str,x)))

Data Assignment For Lists
Set an item in a list using the member function setitem

list[4] = 42
list.__setitem__(4,42)

Example: function that swaps two elements in a given list
def swap(a,x,y):

a[x] = (a[x], a[y])
a[y] = a[x][0]
a[x] = a[x][1]

Example: lambda expression that swaps two elements in a
given list
swap = lambda a,x,y:(lambda f=a.__setitem__:

(f(x,(a[x],a[y])), f(y,a[x][0]), f(x,a[x][1])))()

Sorting with Lambda functions

doubleList = [[8, 4, 5], [3, 8, 11],
[4, 2, 19], [3, 2, 19]]

doubleList.sort()
doubleList.sort(key=lambda x: x[2])
doubleList.sort(key=lambda x: -x[0])
doubleList.sort(key=lambda x: (-x[0], x[1]))

Sorting Algorithms

Can you design an algorithm that shorts the elements of a list?

Selection Sort Algorithm

This algorithm first finds the smallest element in the array and
exchanges it with the element in the first position, then find the
second smallest element and exchange it with the element in the
second position, and continues in this way until the entire array is
sorted.

Selection Sort: Example

Selection Sort Code

a = [5, 1, 6, 2, 4, 3]
for i in range(0, len(a)):

min = i
for j in range(i + 1, len(a) - 1):

if a[j] > a[min]:
min = j

temp = a[i]
a[j] = a[min]
a[min] = temp

How good is Selection Sort?
I How many comparisons are required until the list is sorted?

How good is Selection Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .

How good is Selection Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required

How good is Selection Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required

How good is Selection Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required
I How much memory is needed ?

How good is Selection Sort?
I How many comparisons are required until the list is sorted?

I 1st loop: n - 1
I 2nd loop: n - 2
I . . .
I (n-1)+(n-2)+(n-3)+ . . . +3+2+1 comparisons are required
I Σ n(n−1)

2 comparisons are required
I How much memory is needed ?

I 1 additional slot.

