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Recursion Coding Style

Recursion is a way of programming or coding a problem, in which a
function calls itself one or more times in its body. Usually, it is
returning the return value of this function call. If a function
definition fulfils the condition of recursion, we call this function a
recursive function.

Termination condition:
» A recursive function has to terminate to be used in a program.
»> A recursive function terminates, if with every recursive call the
solution of the problem is downsized and moves towards a
base case.
» A base case is a case, where the problem can be solved
without further recursion.

Factorial Computation: Using Iteration

def iterative_factorial(n):
result = 1
for i in range(2,n+1):
result *= i
return result

Factorial Computation: Using Recursion

def factorial(n):
if n == 1:
return 1
else:
return n * factorial(n-1)



Factorial Computation

def factorial(n):
print("factorial has been called with n = " + str(n))
if n == 1:
return 1
else:
res = n * factorial(n-1)

print("intermediate result for ", m, " * factorial(" ,n-1, "):

return res

print (factorial(5))

Fibonacci Numbers

The Fibonacci numbers are defined by:
Fn=Fo1+Fo2
where Fp =0and F; =1

» 0,1,1,2,3,5,8,13,21,34,55,89, ...

Factorial Computation: Using Recursion

def fib(n):
if n == 0:

return fib(n-1) + fib(n-2)

Factorial Computation: Using Iteration

def fibi(n):
a,b=0,1
for i in range(n):
a,b=b,a+b
return a




Measure Performance

from timeit import Timer
from fibo import fib

t1 = Timer("fib(10)","from fibo import fib")

for i in range(1,41):
s = "fib(" + str(i) + ")"
t1 = Timer(s,"from fibo import fib")
timel = t1.timeit(3)
s = "fibi(" + str(i) + ")"
£2 = Timer(s,"from fibo import fibi")
time2 = t2.timeit(3)
print("n=/2d, fib: %8.6f, fibi:

%7.6f, percent: %10.2f" % (i,

Fibonacci Numbers

Factorial Computation: Using Recursion and Memory

memo = {0:0, 1:1}
def fibm(n):
if not m in memo:
memo[n] = fibm(n-1) + fibm(n-2)
return memo[n]

Merge Sort Algorithm

In Merge Sort the unsorted list is divided into N sublists, each
having one element, because a list consisting of one element is
always sorted. Then, it repeatedly merges these sublists, to
produce new sorted sublists, and in the end, only one sorted list is
produced.

» Divide and Conquer algorithm
» Performance always same for Worst, Average, Best case




Merge Sort: Example

Sorted sequence

3 4

initial sequence

Merge Sort Code

a = [25, 52, 37, 63, 14, 17, 8, 6]
def mergesort(list):
if len(list) == 1:

return list

left = 1list[0: len(list) // 2]
right = list[len(list) // 2:]

left = mergesort(left)
right = mergesort(right)

return merge(left, right)

Merge Sort Code

def merge(left, right):
result = []
while len(left) > O and len(right) > 0:
if left[0] <= right[0]:
result.append(left.pop(0))
else:
result.append(right.pop(0))

while len(left) > 0:
result.append(left.pop(0))

while len(right) > 0:
result.append(right.pop(0))

return result
print("Before: ", a)

T = mergesort (a)
print("After: ", r)

How good is Merge Sort?
» How many comparisons are required until the list is sorted?
1% loop: two lists § each
274 Joop: four lists § each

For each partition we do n comparisons
In total nlog n comparisons
» How much memory is needed ?
> 1 additional slot.
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Quick Sort Algorithm Quick Sort: Example

List: 25 5237 63 14 178 6

Quick sort is very fast and requires very less additional space. It is » We pick 25 as the pivot.

based on the rule of Divide and Conquer. This algorithm divides All the elements smaller to it on its left,

the list into three main parts : All the elements larger than to its right.
Elements less than the Pivot element After the first pass the list looks like:

68 17 14 25 63 37 52

Now we sort two separate lists:

6817 14 and 63 37 52

We apply the same logic, and we keep doing this until the

complete list is sorted.

Pivot element(Central element)
Elements greater than the pivot element

Sorts any list very quickly
Performance depends on the selection of the Pivot element

Quick Sort: Example Quick Sort Code

|25|52 |37|E3|M|17|8 |5| a = [25, 52, 37, 63, 14, 17, 8, 6]

def partition(list, p, r):
pivot = list[p]
L] i i i=p

pivot

here also we will keep jer

Now we wil keep on on traversing the list while(1):

traversing the list, oy
ill= . ivot a 1= pi :
if ali]<pivot & alill=pivot lonet & afi=pmat mul?(hsi [i] < pivot and list[i] != pivot):
i4=
f both sides we find the slement while(list[j] > pivot and list[j] !'= pivot):
not satisfying their respective j=1
conditions, we swap them. And
keep repeating this PG < §):
temp = list[i]
list[i] = list[j]
list[j] = temp
else:
return j

DIVIDE AND CONQUER - QUICK SORT




Quick Sort Code

def quicksort(list, p, r):
if (p < 1):
q = partition(list, p, r)
quicksort(list, p, q);
quicksort(list, q + 1, r);

print("Before: ", a)
quicksort(a, 0, len(a) - 1)
print("After: ", a)

How good is Quick Sort?
» How many comparisons are required until the list is sorted?

How good is Quick Sort?
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» What if we choose the smallest or the largest item as pivot?
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