
Principles of Computer Science II
Computational Thinking

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 1

Computational Thinking

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Computational thinking is taking an approach to solving problems,
designing systems and understanding human behaviour that draws
on concepts fundamental to computing.

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Computational thinking represents a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager
to learn and use.

Wing, J. M. 2006 Computational thinking. CACM 49, 33–35

Thinking like a computer scientist means more than being able to
program a computer. It requires thinking at multiple levels of
abstraction.

The riddle of machine intelligence
Computational thinking confronts the riddle of machine
intelligence:
I What can humans do better than computers?
I What can computers do better than humans?
I What is computable?

Computational Thinking
I Computers are here to help us.
I What do we need from computers?
I What is our problem?
I Computational Thinking allows us to understand what needs

to be solved.
I Four key techniques (cornerstones) to computational thinking:

1. Decomposition – breaking down a complex problem or system
into smaller, more manageable parts

2. Pattern Recognition – looking for similarities among and
within problems

3. Abstraction – focusing on the important information only,
ignoring irrelevant detail

4. Algorithms – developing a step-by-step solution to the
problem, or the rules to follow to solve the problem



Computational Thinking vs Programming
Thinking computationally is not programming.
I . . . not even thinking as a computer.
I Programming tells computer what to do / how to do it.
I Computational thinking enables us to understand what we

need to tell to computers.
I . . . what to program.

Examples:
I Explain to a friend how to drive to your house
I Organize a party at the park
I Prepare your luggage
I Teach a kid addition/subtraction
I . . .

Decomposition
Turn a complex problem into one we can easily understand.
I . . . probably you already do every day.
I The smaller parts are easier to solve.
I . . . we already know/have the solutions.

Examples:
I Brushing our teeth

Which brush? How long? How hard? What toothpaste?
I Solving a crime

What crime? When? Where? Evidence? Witnesses? Recent
similar crimes?

I . . .

Pattern Recognition
We often find patterns among the smaller problems we examine.
I The patterns are similarities or characteristics that some of

the problems share.

Example: Cats
I All cats share common characteristics.

they all have eyes, tails and fur.
I Once we know how to describe one cat we can describe

others, simply by following this pattern.



Abstraction
Hiding irrelevant details to focus on the essential
features needed to understand and use a thing

I A compression process – multiple different pieces of
constituent data to a single piece of abstract data.
e.g., “cat”

I Ambiguity – multiple different references.
e.g., “happiness”, “architecture”

I Simplification – no loss of generality
e.g., “red” - many different things can be red

Thought process wherein ideas are distanced from
objects

Abstraction Example: Car vs Car Breaks

I Do we know how car breaks work?
I Do we know how to use them?

Filter out (ignore) the characteristics that we don’t need in
order to concentrate on those that we do.

Algorithms
A plan, a set of step-by-step instructions to solve a problem.
I In an algorithm, each instruction is identified and the order in

which they should be carried out is planned.



Bioinformatician’s skill set

Prof. Juho Rousu, 2006

Bioinformatician’s skill set
I Statistics, data analysis methods

I Lots of data
I High noise levels, missing values
I #attributes � #data points

I Programming languages
I Scripting languages: Python, Perl, Ruby, . . .
I Extensive use of text file formats: need parsers
I Integration of both data and tools

I Data structures, databases
I New measurement techniques produce huge quantities of

biological data.
I Scientific computation packages

I R, Matlab/Octave, . . .

Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008



Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008

Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008

Bioinformatician’s Competences

Prof. Esa Pitkänen, 2008

Axis 1: Python

1. Integrated Development Environment

2. Data Structures

3. Data Sets

4. Data Formats

5. Data Storage

6. Visualization



Axis 2: Algorithms
1. Complexity Analysis

2. Sorting

3. Exhaustive Search

4. Branch-and-Bound Algorithms

5. Greedy Algorithms

6. Divide-and-Conquer Algorithms

7. Data Mining Algorithms

Axis 3: Cloud Computing

1. Cloud Storage

2. Databases

3. Elastic Compute

4. Handling Large Data Sets

Literature

Jones, Pevzner: An Introduction to
Bioinformatics Algorithms. MIT Press,
2004

1st Assignment

https://www.hackerrank.com/
I Complete a total of 50 Python challenges from the following

subdomains:
I Python: Basic Data Types (any 5), Strings (any 4), Sets (any

4), Math (any 4), IterTools (any 4), Collections (any 4)
I Algorithms: Warmup (10), Sorting (any 10), Strings (any 5)

I You can cooperate, You can search on the Internet, . . .
I You need to write your own code
I Email ichatz@diag.uniroma1.it

Subject: [PCS2] Homework 1
Your GitHub repository with your solutions, for all challenges.
Also send your hackerrank user account link:
https://www.hackerrank.com/{username}


