
Principles of Computer Science II
Large Scale Computation

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 22

Problem: Lots of data
I Example: Homo sapiens high coverage assembly GRCh37

I 27478 contigs
I contig length total 3.2 Gb.
I chromosome length total 3.1 Gb.

I One computer can read 30-35MB/sec from disc
I ∼ 10 months to read the data

I ∼ 100 hard drives just to store the data in compressed format
I Even more to do something with the data.

Spread the work over many machines
I Good news: same problem with 1000 machines: ≤ 1 hour
I Bad news: concurrency

I communication and coordination
I recovering from machine failure
I status reporting
I debugging
I optimization

I Bad news 2: repeat for every problem you want to solve

Computing Clusters
I Many racks of computers
I Thousands of machines per cluster
I Limited bandwidth between racks



Computing Environment
I Each machine has 2-4 CPUs

I Typically quad-core
I Future machines will have more cores

I 1-6 locally-attached disks
I ∼ 10TB of disk

I Overall performance more important than peak performance
of single machines

I Reliability
I In 1 server environment, it may stay up for three years (1000

days)
I If you have 10000 servers, expect to lose 10 each day

I Ultra reliable hardware still fails
I We need to keep in mind cost of each machine

Map Reduce Computing Paradigm
I A simple programming model

I Applies to large-scale computing problems
I Hides difficulties of concurrency

I automatic parallelization
I load balancing
I network and disk transfer optimization
I handling of machine failures
I robustness
I improvements to core libraries benefit all users of library

A typical problem

I Read a lot of data

I Map: extract something important from each record

I Shuffle and sort

I Reduce: aggregate, summarize, filter or transform

I Write the results

In more details
I Programmer specifies two primary methods:

I map(k, v) → < k ′, v ′ > ∗
I Takes a key-value pair and outputs a set of key-value pairs
I There is one Map call for every (k, v) pair

I reduce(k ′, < v ′ > ∗) → < k ′, v ′ > ∗
I All values v’ with same key k’ are reduced together and

processed in v’ order
I There is one Reduce function call per unique key k’

I All v ′ with same k ′ are reduced together, in order.



An example: Frequencies in DNA sequence
A typical exercise for a new engineer in his/her first week:
I Input files with one document per record
I Specify a map function that takes a key/value pair

I key = document URL
I value = document contents

I Output of map function is (potentially many) key/value pairs.
I In this case, output:

(word, 1) once per word in the document

“document 1”, “CTGGGCTAA”
converted to
(C, 1), (T, 1), (G, 1), . . .

An example: Frequencies in DNA sequence
I MapReduce library gathers together all pairs with the same

key (shuffle/sort)
I The reduce function combines the values for a key
I In this example:

key = “A”
values = 1, 1
summarize
2

key = “G”
values = 1, 1, 1
summarize
3

key = “C”
values = 1, 1
summarize
2

key = “T”
values = 1, 1
summarize
2

I Output of reduce paired with key and saved

(A, 3), (G, 3), (C, 2), (T, 2)

An example: Frequencies in DNA sequence
s = 'CTGGGCTAA'

seq = list(s) # ['C', 'T', 'G', 'G', 'G', 'C', 'T', 'A', 'A']

sc.parallelize(seq)\

.map(lambda symbol: (symbol, 1))\

.reduceByKey(add)\

.collect()

Output:
[('A', 2), ('C', 2), ('G', 3), ('T', 2)]

Fault tolerance: handled via re-execution

I On worker failure:
I Detect failure via periodic heartbeats
I Re-execute completed and in-progress map tasks
I Re-execute in progress reduce tasks
I Task completion committed through master

I On master failure:
I Restart execution



AWS Elastic Map Reduce
I Managed Hadoop framework on EC2 instances.
I AWS EMR splits large processing jobs into smaller jobs and

distributes them across many compute nodes in a Hadoop
cluster.

I Easily run and scale open-source big data frameworks:
I Apache Spark
I Apache Flink
I Apache Hive
I Presto
I Apache HBase
I . . .

I EMR Notebooks.

EMR: Benefits
I Easy to use – interact using Jupyter via web.
I Low cost

I Pay a per-instance rate for every second used, with a
one-minute minimum charge.

I Elastic
I For short-running jobs, you can spin up and spin down clusters

and pay per second for the instances used.
I For long-running workloads, you can create highly available

clusters that automatically scale to meet demand.
I Reliable
I Secure
I Flexible

Apache EMR Architecture AWS EMR and Apache Hadoop
I The Elastic Map Reduce is built on top Apache Hadoop.
I An open-source Java software framework that supports

massive data processing across a cluster of instances.
I Distributed processing across the instances that make up the

cluster.
I It can run on a single instance or thousands of instances.
I Elastic auto-scaling of cluster.
I Provides a fault-tolerant processing environment.



Apache Hadoop
I Apache Hadoop includes the following modules:

I Hadoop Common: The common utilities that support the
other Hadoop modules.

I Hadoop Distributed File System (HDFS): A distributed file
system that provides high-throughput access to application
data.

I Hadoop YARN: A framework for job scheduling and cluster
resource management.

I Hadoop MapReduce: A YARN-based system for parallel
processing of large data sets.

I Hadoop Ozone: An object store for Hadoop.

Apache Hadoop Ecosystem

Apache Spark on AWS EMR
I Started in 2009 as a research project at UC Berkley’s

AMPLab.
I An open-source, distributed processing system used for big

data workloads.
I In contrast to Hadoop, uses in-memory caching to achieve

high speed-ups.
I Optimized query execution for fast analytic queries against

data of any size.
I Development APIs in Java, Scala, Python and R.
I Supports code reuse across multiple workloads-batch

processing:
I interactive queries, real-time analytics, machine learning, and

graph processing.

EMR Notebooks
I EMR Notebooks is a Jupyter Notebook environment built in

to the Amazon EMR console.
I Quickly create Jupyter notebooks, attach them to Spark

clusters
I Use Jupyter Notebook editor to remotely run queries and

code.
I Open, attach multiple notebooks to a single cluster, and

re-use a notebook on different clusters.
I You can start a cluster, attach an EMR notebook for analysis,

and then terminate the cluster.
I You can also close a notebook attached to one running cluster

and switch to another.
I Multiple users can attach notebooks to the same cluster

simultaneously.



EMR Notebooks architecture Considerations when using EMR Notebooks
I User notebooks and files are saved to the file system on the

master node.
I This is ephemeral storage that does not persist through

cluster termination.
I When a cluster terminates, this data is lost if not backed up.
I EMR Notebooks support persistance to S3.
I EMR Notebooks supports connection with GitHub

repositories.

Create Cluster Quick Options



Software Configuration Hardware Configuration

Choose Instance Types General Cluster Settings



Security Options EMR Notebooks

Create notebook Choose a cluster



Link Git repository to notebook Add repository

Link Git repository to notebook Create notebook



Starting notebook EMR Notebooks: ready

Jupyter Tree Choose PySpark Kernel



Spark Driver Program

I Map/Reduce operations are issued to the cluster manager.
I Map/Reduce operations work on a given dataset.
I The dataset is encoded using the RDD structure.

Spark Context

I SparkContext is the entry point to any spark functionality.

I A SparkContext represents the connection to a Spark cluster.

I Used to create RDD and broadcast variables on that cluster.

I Only one SparkContext should be active per session.

Resilient Distributed Datasets
I A fundamental data structure of Spark.
I Spark makes use RDD to achieve faster and efficient

MapReduce operations.
I An immutable distributed read-only collection of objects.

I immutable = state cannot change after it is constructed.
I Can contain any type of Python, Java, or Scala objects,

including user-defined classes.
I Two ways to construct an RDD:

1. Referencing a dataset in an external storage system: S3,
HDFS, HBase, . . .

2. Through Map/Reduce opreations.
I RDD is divided into logical partitions.

I Each logical partition may be computed on different nodes of
the cluster.

Iterative Operations on MapReduce

I Reuse intermediate results across multiple computations in
multi-stage applications.

I Each Map/Reduce operation works on a given/input RDD.
I Each Map/Reduce operation constructs/outputs a new RDD.
I If the Distributed memory (RAM) is not sufficient to store

intermediate RDD, then it will store those results on the disk.



Dataset

I Download dataset
http:

//hplgit.github.io/bioinf-py/data/yeast_chr1.txt

I Upload dataset to S3

Retrieve dataset
I Use the variable sc to access the Spark Context.
I Load the text file to Spark.

raw_data = sc.textFile("s3://.../yeast_chr1.txt")

I textFile Creates a new RDD object.
I Provides a reference to the dataset - no data loaded yet.

raw_data.count()

I Retrieves the dataset from s3.
I Creates 1 entry in the RDD for each line of the text file.
I Counts the entries in the RDD object.

raw_data.take(5)

I Take the first 5 elements of the RDD.

Spark Monitoring Job Progress Sample App
def splitLine(line):

pairs = []

symbols = list(line)

if len(booksymbols) > 1:

for symbol in symbols:

pairs.append([symbol, 1])

return pairs

pairs = raw_data.flatMap(splitLine)

print(pairs.take(10))

final = pairs.reduceByKey(lambda a,b: a + b)

print(final.collect())



Profile most-frequent k-mer

CGGGGCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAACCAAAGCGGACAAA
GGGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCTC
CTGCTGTACAACTGAGATCATGCTGCTTCAAC
TACATGATCTTTTGTGGATGAGGGAATGATGC

I Seven (7) 32-nucleotide DNA sequences
I A “secret” pattern P=ATGCAACT of length l = 8 implanted.
I Can you reconstruct P by analyzing the DNA sequences?

An example

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC

I The same DNA sequences with the implanted pattern
ATGCAACT

I Can you spot the locations of the implanted pattern?

An example

CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC

I Same as before but showing the implant locations.
I Devise an MapReduce algorithm to automatically identify the

implanted pattern
I Length l is known.
I Sequence: https://goo.gl/xN7WvE

from operator import add

conf = SparkConf().setAppName("Profile").setMaster("local")

sc = SparkContext(conf=conf)

val raw_data = sc.wholeTextFiles("pattern.txt")

def splitLine(line):

pairs = []

if len(line) > 1:

for symbol in range(0, len(line)-8):

pairs.append((line[symbol:symbol+8], 1))

return pairs

pairs = raw_data.flatMap(splitLine) \

.reduceByKey(add) \

.sortBy(lambda a: -a[1])

print(pairs.take(5))



Profile most-Frequent first appearing k-mer

CGGGGCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAACCAAAGCGGACAAA
GGGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCTC
CTGCTGTACAACTGAGATCATGCTGCTTCAAC
TACATGATCTTTTGTGGATGAGGGAATGATGC

I Identify most-frequent first-appearing k-mer
I In first line, 3-mer CGG appears before GGC, TGG, GTC, . . .

from operator import add

conf = SparkConf().setAppName("Profile").setMaster("local")

sc = SparkContext(conf=conf)

raw_data = sc.textFile("yeast_chr1.txt")

def splitLine(line):

pairs = []

for symbol in range(0, len(line)-6, 3):

for second in range(symbol+3, len(line)-6, 3):

pairs.append(((line[symbol:symbol+3],

line[second:second+3]), 1))

return pairs

pairs = raw_data.flatMap(splitLine) \

.reduceByKey(add) \

.sortBy(lambda a: -a[1])

print(pairs.take(10))


