Principles of Computer Science I
Large Scale Computation
loannis Chatzigiannakis
Sapienza University of Rome

Lecture 22

Problem: Lots of data
» Example: Homo sapiens high coverage assembly GRCh37
> 27478 contigs
> contig length total 3.2 Gb.
» chromosome length total 3.1 Gb.
» One computer can read 30-35MB/sec from disc
» ~ 10 months to read the data
» ~ 100 hard drives just to store the data in compressed format
» Even more to do something with the data.

Spread the work over many machines
» Good news: same problem with 1000 machines: < 1 hour
» Bad news: concurrency
communication and coordination
recovering from machine failure
status reporting
debugging
optimization
> Bad news 2: repeat for every problem you want to solve

Computing Clusters
» Many racks of computers
» Thousands of machines per cluster
» Limited bandwidth between racks

Computing Environment
» Each machine has 2-4 CPUs
> Typically quad-core
» Future machines will have more cores
» 1-6 locally-attached disks
» ~ 10TB of disk
» Overall performance more important than peak performance
of single machines
> Reliability
> In 1 server environment, it may stay up for three years (1000
days)
> If you have 10000 servers, expect to lose 10 each day
» Ultra reliable hardware still fails
> We need to keep in mind cost of each machine

Map Reduce Computing Paradigm
» A simple programming model
> Applies to large-scale computing problems

» Hides difficulties of concurrency
automatic parallelization
load balancing
network and disk transfer optimization
handling of machine failures
robustness
improvements to core libraries benefit all users of library

A typical problem

Read a lot of data

Map: extract something important from each record
Shuffle and sort

Reduce: aggregate, summarize, filter or transform
Write the results

In more details

» Programmer specifies two primary methods:
> map(k,v) — <K, v >=x
> Takes a key-value pair and outputs a set of key-value pairs
> There is one Map call for every (k, v) pair
> reduce(k’, < v/ >%) — <Kk, v >=x
> All values v’ with same key k' are reduced together and
processed in v' order
> There is one Reduce function call per unique key k'
» All v/ with same k’ are reduced together, in order.

An example: Frequencies in DNA sequence
A typical exercise for a new engineer in his/her first week:
» Input files with one document per record
» Specify a map function that takes a key/value pair
» key = document URL
> value = document contents
» Output of map function is (potentially many) key/value pairs.
» In this case, output:
(word, 1) once per word in the document

“document 1", “CTGGGCTAA"
converted to

(C, 1), (T, 1), (G, 1), ...

An example: Frequencies in DNA sequence
» MapReduce library gathers together all pairs with the same

key (shuffle/sort)
» The reduce function combines the values for a key

» In this example:

key = "A" key = “G" key = “C' key = “T"
values =1, 1 values =1,1,1 values=1,1 values =1, 1
summarize summarize summarize summarize

2 3 2 2
» Output of reduce paired with key and saved

(A.3).(G.3).(C,2). (T.2)

An example: Frequencies in DNA sequence
s = 'CTGGGCTAA'
seq = list(s) # ['C’, 'T', 'G', 'G',
sc.parallelize(seq)\
‘map(lambda symbol: (symbol, 1)\
reduceByKey (add)\
collect ()

Output:
[car, 2y, ¢c, 2, (6, 3), (T, 2]

Fault tolerance: handled via re-execution

» On worker failure:
» Detect failure via periodic heartbeats
P Re-execute completed and in-progress map tasks
> Re-execute in progress reduce tasks
> Task completion committed through master

» On master failure:
> Restart execution

AWS Elastic Map Reduce EMR: Benefits
» Managed Hadoop framework on EC2 instances. » Easy to use — interact using Jupyter via web.
» AWS EMR splits large processing jobs into smaller jobs and » Low cost
distributes them across many compute nodes in a Hadoop > Pay a per-instance rate for every second used, with a
cluster. one-minute minimum charge.
» Easily run and scale open-source big data frameworks: > Elastic
Apache Spark » For short-running jobs, you can spin up and spin down clusters
Apache Flink and pay per second for the instances used.
Apache Hive » For long-running workloads, you can create highly available
Presto clusters that automatically scale to meet demand.
Apache HBase » Reliable
» Secure
» EMR Notebooks. > Flexible

AWS EMR and Apache Hadoop
The Elastic Map Reduce is built on top Apache Hadoop.
An open-source Java software framework that supports
massive data processing across a cluster of instances.
Distributed processing across the instances that make up the
cluster.
It can run on a single instance or thousands of instances.
Elastic auto-scaling of cluster.
Provides a fault-tolerant processing environment.

5 \~ Core instance group

Apache Hadoop Apache Hadoop Ecosystem

» Apache Hadoop includes the following modules: -3 ™ -

» Hadoop Common: The common utilities that support the A
other Hadoop modules.

» Hadoop Distributed File System (HDFS): A distributed file
system that provides high-throughput access to application
data.

Hadoop YARN: A framework for job scheduling and cluster
resource management.

Hadoop MapReduce: A YARN-based system for parallel
processing of large data sets.

Hadoop Ozone: An object store for Hadoop

2

Z

Apache Pig
Apache Hive
SQL Query

Workflow

Apache Oozie

YARN (MapReduce V2) @

Distributed Processing Framework

Apache HBase
Columnar Storage

HDFS
Hadoop Distributed File System

Apache ZooKeeper

Coordination

Apache Spark on AWS EMR EMR Notebooks
> Started in 2009 as a research project at UC Berkley's » EMR Notebooks is a Jupyter Notebook environment built in
AMPLab. to the Amazon EMR console.
» An open-source, distributed processing system used for big » Quickly create Jupyter notebooks, attach them to Spark
data workloads. clusters
» In contrast to Hadoop, uses in-memory caching to achieve » Use Jupyter Notebook editor to remotely run queries and
high speed-ups. code.
> Optimized query execution for fast analytic queries against » Open, attach multiple notebooks to a single cluster, and
data of any size. re-use a notebook on different clusters.
» Development APIs in Java, Scala, Python and R. > You can start a cluster, attach an EMR notebook for analysis,
» Supports code reuse across multiple workloads-batch and then terminate the cluster.
processing: » You can also close a notebook attached to one running cluster
> interactive queries, real-time analytics, machine learning, and and switch to another.
graph processing. » Multiple users can attach notebooks to the same cluster

simultaneously.

EMR Notebooks architecture

EMR Cluster

Jupyter Master instance
Notebook Ul

Coreftask
Command line instances

Considerations when using EMR Notebooks
» User notebooks and files are saved to the file system on the

master node.
This is ephemeral storage that does not persist through
cluster termination.
When a cluster terminates, this data is lost if not backed up.
EMR Notebooks support persistance to S3.
EMR Notebooks supports connection with GitHub
repositories.

Create Cluster

Welcome to Amazon Elastic MapReduce

Quick Options

e Confguraton

Mardware coniguranion

Securty and access

Software Configuration Hardware Configuration

General Cluster Settings

Security Options EMR Notebooks

Create Cluster

Create notebook Choose a cluster

Create notebook

Name and confgure your notebook

Link Git repository to notebook

Add repository

Add

Link Git reposito

to notebook

Create notebook

Create notebook

Name and confgure your notebook

Starting notebook EMR Notebooks: ready

Notebook MyNotebook - " — Notebos

Jupyter Tree Choose PySpark Kernel

Spark Driver Program Spark Context

Worker Node

S I:Car)\s » SparkContext is the entry point to any spark functionality.
» A SparkContext represents the connection to a Spark cluster.

Driver Program » Used to create RDD and broadcast variables on that cluster.

Cluster Manager » Only one SparkContext should be active per session.
Worker Node.

Executor

» Map/Reduce operations are issued to the cluster manager.
» Map/Reduce operations work on a given dataset.
» The dataset is encoded using the RDD structure.

Resilient Distributed Datasets Iterative Operations on MapReduce
» A fundamental data structure of Spark. Jsiioe =t panton:2 Reealonzn

» Spark makes use RDD to achieve faster and efficient Woes || g | write s |] [wn !
MapReduce operations. — b 4) . —
» An immutable distributed read-only collection of objects. D-!hv" o i (;:I\.:k)
> immutable = state cannot change after it is constructed. ok i \ | ‘

» Can contain any type of Python, Java, or Scala objects, "’°“"""“ mp;;‘n
including user-defined classes. :énvue storage
» Two ways to construct an RDD:
! 5‘;;?"?_;?3::“359(in an external storage system: S3, Reuse intermediate results across multiple computations in
2. Through Map/Reduce opreations. multi-stage applications. X . .
> RDD is divided into logical partitions. Each Map/Reduce operation works on a given /input RDD.
> Each logical partition may be computed on different nodes of Each Map/Reduce operation constructs/outputs a new RDD.
the cluster. If the Distributed memory (RAM) is not sufficient to store

intermediate RDD, then it will store those results on the disk.

Dataset Retrieve dataset

» Use the variable sc to access the Spark Context.
» Download dataset » Load the text file to Spark.
http:
//hplgit.github.io/bioinf-py/data/yeast_chrl.txt rav_data = sc.textFile("s3://.
» Upload dataset to S3

../yeast_chrl.txt")

» textFile Creates a new RDD object.
» Provides a reference to the dataset - no data loaded yet.

raw_data. count ()

> Retrieves the dataset from s3.
» Creates 1 entry in the RDD for each line of the text file.
» Counts the entries in the RDD object.

raw_data.take(5)

» Take the first 5 elements of the RDD.

Spark Monitoring Job Progress Sample App

Click 8 3nd view Spark def splitLine(line):
ck o expand and view Spar

symbols = list(line)
if len(booksymbols) > 1:
for symbol in symbols:
irs. d bol, 1
I | pairs.append([symbol, 1])

For faled jobs, ciick these links to

Ve 0gs i Amaion S when return pairs
ogaing ¢ enabled on e custer

e e pairs = rav_data.flatMap(splitLine)
- — print (pairs.take(10))

final = pairs.reduceByKey(lambda a,b: a + b)
print (final.collect())

oot

o ol L s, i)

T e

Profile most-frequent k-mer An example

CGGGGCTGGGTCGTCACATTCCCCTTTCGATA CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAACCAAAGCGGACAAA TTTGAGGGTGCCCAATAAATGCAACTCCAAAGCGGACAAA
GGGATGCCGTTTGACGACCTAAATCAACGGCC GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGCCAGGAGCGCCTTTGCTGGTTCTACCTG AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCTC AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC
CTGCTGTACAACTGAGATCATGCTGCTTCAAC CTGCTGTACAACTGAGATCATGCTGCATGCAACTTTCAAC
TACATGATCTTTTGTGGATGAGGGAATGATGC TACATGATCTTTTGATGCAACTTGGATGAGGGAATGATGC

» Seven (7) 32-nucleotide DNA sequences » The same DNA sequences with the implanted pattern
> A “secret” pattern P=ATGCAACT of length / = 8 implanted. ATGCAACT
» Can you reconstruct P by analyzing the DNA sequences? » Can you spot the locations of the implanted pattern?

from operator import add

An example
conf = SparkConf () .setAppName("Profile").setMaster("local")

sc = SparkContext (conf=cont)
CGGGGCTATGCAACTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAAATGCAACT CCAAAGCGGACAAA val rav_data = sc.wholeTextFiles('pattern.txt")
GGATGCAACTGATGCCGTTTGACGACCTAAATCAACGGCC

AAGGATGCAACTCCAGGAGCGCCTTTGCTGGTTCTACCTG “fajfifa‘e‘h“e’ :
AATTTTCTAAAAAGATTATAATGTCGGTCCATGCAACTTC 3t lenCline) > is
CTGCTGTACAACTGAGAT CATGCTGCATGCAACTTTCAAC for symbol in range(0, len(line)-8):
TACATGATCTTTTGATGCAACT TGGATGAGGGAATGATGC pairs.append((1ine[synbol:symbol+8], 1))

return pairs

» Same as before but showing the implant locations.

> pevise an MapReduce algorithm to automatically identify the pairs = raw_data.flatMap(splitLine) \
implanted pattern reduceByKey (add) \

» Length / is known. .sortBy(lambda a: -a[1])

> Sequence: https://goo.gl/xN7WvE print (pairs. take (5))

Profile most-Frequent first appearing k-mer

CGGGGCTGGGTCGTCACATTCCCCTTTCGATA
TTTGAGGGTGCCCAATAACCAAAGCGGACAAA
GGGATGCCGTTTGACGACCTAAATCAACGGCC
AAGGCCAGGAGCGCCTTTGCTGGTTCTACCTG
AATTTTCTAAAAAGATTATAATGTCGGTCCTC
CTGCTGTACAACTGAGATCATGCTGCTTCAAC
TACATGATCTTTTGTGGATGAGGGAATGATGC

» Identify most-frequent first-appearing k-mer
» In first line, 3-mer CGG appears before GGC, TGG, GTC, ...

from operator import add

conf = SparkConf () .setAppName("Profile").setMaster("local")
sc = SparkContext (conf=conf)

raw_data = sc.textFile("yeast_chri.txt")

def splitLine(line):
pairs = []
for symbol in range(0, len(line)-6, 3):
for second in range(symbol+3, len(line)-6, 3):
pairs.append(((line[symbol:symbol+3],
line[second:second+3]), 1))

return pairs

pairs = raw_data.flatMap(splitLine) \
.reduceByKey (add) \
.sortBy(lambda a: -a[1])
print (pairs. take(10))

