Principles of Computer Science II

Algorithms for Biolnformatics

Ioannis Chatzigiannakis

Sapienza University of Rome
Lecture 5

Pebble Game

- Game played in turns by 2 players.
- Two piles of equal number of pebbles.
- Each turn a player may either
- take 1 pebble from a single pile, or
- take 1 pebble from both piles.
- The player that takes the last pebble wins.

Best Strategy for Winning the Pebble Game

- Does the first player always have an advantage?
- Let's consider the most simplified version.
- Pebbles $=2$ - we call this the 2×2 game .
- Is there a winning strategy?
- What is the winning strategy?

Generaled Strategy for Winning the Pebble Game

- Can we generalize the strategy of the 2×2 game?
-What about the 3×3 game?
- Consider different game sequences.
- Consider the $n \times n$ game.
- Is there only one winning strategy?
- How easy it is to describe our strategy?
- Quality of solution.

We build a matrix for all game combinations. Four actions:

1. \uparrow take one pebble from pile A.
2. \leftarrow take one pebble from pile B.
3. \nwarrow take one pebble from each pile.
4. * ignore game.

	0	1	2	3	4	5	6	7	8	9	10
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											

The first player always loses the 2×2.

- Clearly also for $0 \times 2,0 \times 4, \ldots$
- Can we generalize for all games where each pile has an even number of pebbles?

- The first player always loses the 2×2.
- Clearly also for $0 \times 2,0 \times 4, \ldots$
- Can we generalize for all games where each pile has an even number of pebbles?

	0	1	2	3	4	5	6	7	8	9	10
0	*		*		*		*		*		*
1											
2	*		*		*		*		*		*
3											
4	*		*		*		*		*		*
5											
6	*		*		*		*		*		*
7											
8	*		*		*		*		*		*
9											
10	*		*		*		*		*		*

- Only 1 option for all $0 \times 1,0 \times 3, \ldots$ and $1 \times 0,3 \times 0, \ldots$

- Only 1 option for all $0 \times 1,0 \times 3, \ldots$ and $1 \times 0,3 \times 0$,
- Can we generalize for other columns/rows where one pile has an odd number of pebbles and the other an even?

	0	1	2	3	4	5	6	7	8	9	10
0	$*$	\leftarrow	$*$								
1	\uparrow										
2	$*$		$*$		$*$		$*$		$*$		$*$
3	\uparrow										
4	$*$		$*$		$*$		$*$		$*$		$*$
5	\uparrow										
6	$*$		$*$		$*$		$*$		$*$		$*$
7	\uparrow				$*$		$*$		$*$		$*$
8	$*$		$*$		$*$						
9	\uparrow				$*$		$*$		$*$		$*$
10	$*$		$*$		$*$						

	0	1	2	3	4	5	6	7	8	9	10
0	$*$	\leftarrow	$*$								
1	\uparrow		\uparrow								
2	$*$	\leftarrow	$*$								
3	\uparrow		\uparrow								
4	$*$	\leftarrow	$*$								
5	\uparrow		\uparrow								
6	$*$	\leftarrow	$*$								
7	\uparrow		\uparrow								
8	$*$	\leftarrow	$*$								
9	\uparrow		\uparrow								
10	$*$	\leftarrow	$*$								

- Only 1 option for all $0 \times 1,0 \times 3, \ldots$ and $1 \times 0,3 \times 0$,
- Can we generalize for other columns/rows where one pile has an odd number of pebbles and the other an even?
- What about the other rows/columns?

	0	1	2	3	4	5	6	7	8	9	10
0	$*$	\leftarrow	$*$								
1	\uparrow	\nwarrow	\uparrow								
2	$*$	\leftarrow	$*$								
3	\uparrow	\nwarrow	\uparrow								
4	$*$	\leftarrow	$*$								
5	\uparrow	\nwarrow	\uparrow								
6	$*$	\leftarrow	$*$								
7	\uparrow	\nwarrow	\uparrow								
8	$*$	\leftarrow	$*$								
9	\uparrow	\nwarrow	\uparrow								
10	$*$	\leftarrow	$*$								

An algorithmic approach for winning the Pebble Game

- How can we build the matrix for any game size, e.g., 20×20
- What is the algorithm for winning the game?

An algorithmic approach for winning the Pebble Game

- How can we build the matrix for any game size, e.g., 20×20
- What is the algorithm for winning the game?
- Why should I care?

An algorithmic approach for winning the Pebble Game

- How can we build the matrix for any game size, e.g., 20×20
- What is the algorithm for winning the game?
- Why should I care?
- It is the sequence alignment problem.
- The computational idea used to solve both problems is the same.
- We need to understand how algorithms work.

Methodology of solving a computational problem

- What is the problem at hand ?
- Identify \& Understand assumptions.
- What is our goal ?
- Identify similar problems/solutions in the bibliography
- What are the theoretical foundation?
- Can we formulate the problem in a unambiguous and precise way ?
- What is the Input that we have?
- Do we have enough data or should we try to collect?
- Open data sets ?
- Can we synthesize input data ?

What is the expected Output?

Solution Sketch

- Do we have a rough idea of a solution ?
- Do we have identified an approach to solving the problem ?
- think again!
- go through the definition - maybe we overlooked something ?
- Write down a solution sketch
- check if it adheres to the initial assumptions
- can you try it out with a small input?
- Is the solution correct ? can we provide some arguments ?
- What is the performance of the solution ?
- Can we think of a more efficient solution ?

Implement the first version

- Pick your programming language of choice.
- Implement your solution
- No need to try to make it elegant / fast.
- Remember Donalt Knuth: There is no such thing as early optimization.
- Get some input data
- Open datasets
- Small size
- Limited Evaluation
\checkmark does it work?
- do you need to make any modifications ?
- are there special cases that you missed ?

Iterative approach

- Step-by-step development
- Continuous development.
- Agile methodology.
- Identify issues in previous version
- Code beautification.
- Bug fixes.
- Performance improvements.
- Additional functionalities.
- Implement improvements
- Make sure code is always clean + easy to maintain.
- Keep detailed records of changes.
- Always keep history of source code evolution.
- Performance Evaluation
- bigger input.
- scalability?

Quality of Code

John Woods
Always code as if the guy who ends up maintaining your code will be a violent psychopath who knows where you live.

Theoretical - Practical Approach Cycle

Theoretical Results

Recursion Coding Style

Recursion is a way of programming or coding a problem, in which a function calls itself one or more times in its body. Usually, it is returning the return value of this function call. If a function definition fulfils the condition of recursion, we call this function a recursive function.

Termination condition:

- A recursive function has to terminate to be used in a program.
- A recursive function terminates, if with every recursive call the solution of the problem is downsized and moves towards a base case.
- A base case is a case, where the problem can be solved without further recursion.

Factorial Computation: Using Iteration

```
def iterative_factorial(n):
    result = 1
    for i in range(2,n+1):
        result *= i
    return result
```


Factorial Computation

```
def factorial(n):
    print("factorial has been called with n = " + str(n))
    if n == 1:
        return 1
    else:
        res =n * factorial(n-1)
        print("intermediate result for ", n, " * factorial(" ,n-1, "):
        return res
print(factorial(5))
```

Fibonacci Numbers

The Fibonacci numbers are defined by:
$F_{n}=F_{n-1}+F_{n-2}$
where $F_{0}=0$ and $F_{1}=1$

- $0,1,1,2,3,5,8,13,21,34,55,89, \ldots$

Factorial Computation: Using Recursion

```
def fib(n):
    if }\textrm{n}==0\mathrm{ :
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
```


Measure Performance

```
import time
for \(i\) in range ( 1,41 ):
    \(\mathrm{t} 1=\mathrm{time} \cdot\) perf_counter ()
    \(\mathrm{s}=\mathrm{fib}(\mathrm{i})\)
    \(\mathrm{t} 2=\mathrm{time} \cdot\) perf_counter ()\(-\mathrm{t} 1\)
    t3 \(=\) time.perf_counter ()
    \(\mathrm{s}=\mathrm{fibi}(\mathrm{i})\)
    t4 = time.perf_counter () - t3
    print(f"n=\{i\}, fib: \{t2:.2f\}, fibi: \{t1:.2f\}, percent: \{t2/t4:
```

import time
for i in range (1,41):
t1 = time.perf_counter ()
$=\mathrm{fib}(\mathrm{i})$
time.perf_counter() - t1
$\mathrm{s}=\mathrm{fibi}(\mathrm{i})$
t4 = time.perf_counter() -

Fibonacci Numbers

Factorial Computation: Using Recursion and Memory

```
memo = {0:0, 1:1}
def fibm(n):
    if not n in memo:
        memo[n] = fibm(n-1) + fibm(n-2)
    return memo[n]
```

