Principles of Computer Science I

Algorithms for Biolnformatics

loannis Chatzigiannakis
Sapienza University of Rome

Lecture 5

Pebble Game

» Game played in turns by 2 players.
» Two piles of equal number of pebbles.
» Each turn a player may either
> take 1 pebble from a single pile, or
> take 1 pebble from both piles.
» The player that takes the last pebble wins.

Best Strategy for Winning the Pebble Game
» Does the first player always have an advantage?
> Let's consider the most simplified version.

> Pebbles = 2 — we call this the 2 x 2 game.
> |s there a winning strategy?
» What is the winning strategy?

Generaled Strategy for Winning the Pebble Game

» Can we generalize the strategy of the 2 x 2 game?
» What about the 3 x 3 game?

» Consider different game sequences.
» Consider the n x n game.

» s there only one winning strategy?

> How easy it is to describe our strategy?

> Quality of solution.




We build a matrix for all game combinations. Four actions: » The first player always loses the 2 x 2.

1. 1 take one pebble from pile A. » Clearly also for 0 x 2, 0 x 4, ...

2. ¢ take one pebble from pile B. » Can we generalize for all games where each pile has an even

3. N take one pebble from each pile. number of pebbles?

4. * ignore game.
0 1

3 4 5 6 7 8 9 9

©ONOU A WN RO

—
o

» The first player always loses the 2 x 2. » Only 1 option forall0x1,0x3,...and 1 x0,3x0, ...

» Clearly also for 0 x 2, 0 x 4, ...

» Can we generalize for all games where each pile has an even
number of pebbles?

0 1 2
x %

©ONOU A WN RO

—
o




» Only 1 option forall0x1,0x3,...and 1x0,3x0, ... » Only 1 option forall0x1,0x 3, ...and 1 x0,3x0, ...
» Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?

—-
=)

©CONO U A WN = O
©ONOU A WN O
*P K K X Xk

=
=)
=
=)

» Only 1 option forall0x1,0x3,...and 1x0,3x0, ...

» Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?

» What about the other rows/columns?

0 6

An algorithmic approach for winning the Pebble Game
» How can we build the matrix for any game size, e.g., 20 x 20
» What is the algorithm for winning the game?

—
=)

2 4

©ONOU A WN O
K K K K Kk

TATST AT AT ST
TATST AT ST ST
TATST AT AT ST
TATAT AT AT ST
TATST AT AT ST e

—
5]




An algorithmic approach for winning the Pebble Game
» How can we build the matrix for any game size, e.g., 20 x 20
» What is the algorithm for winning the game?
» Why should | care?

An algorithmic approach for winning the Pebble Game
» How can we build the matrix for any game size, e.g., 20 x 20

What is the algorithm for winning the game?
Why should | care?
It is the sequence alignment problem.
The computational idea used to solve both problems is the
same.
We need to understand how algorithms work.

Methodology of solving a computational problem

» What is the problem at hand ?
Identify & Understand assumptions.
What is our goal ?
Identify similar problems/solutions in the bibliography
What are the theoretical foundation ?
Can we formulate the problem in a unambiguous and precise
way ?
» What is the Input that we have ?
» Do we have enough data or should we try to collect?
> Open data sets 7
» Can we synthesize input data 7
» What is the expected Output ?

Solution Sketch
» Do we have a rough idea of a solution ?
» Do we have identified an approach to solving the problem ?
> think again !
> go through the definition — maybe we overlooked something ?
» Write down a solution sketch
> check if it adheres to the initial assumptions
> can you try it out with a small input ?
» |s the solution correct ? can we provide some arguments ?
» What is the performance of the solution ?
» Can we think of a more efficient solution ?



Implement the first version
» Pick your programming language of choice.
» Implement your solution
> No need to try to make it elegant / fast.
> Remember Donalt Knuth: There is no such thing as early
optimization.
» Get some input data
> Open datasets
> Small size
» Limited Evaluation
> does it work 7
» do you need to make any modifications ?
> are there special cases that you missed ?

Iterative approach
> Step-by-step development
» Continuous development.
> Agile methodology.
> |dentify issues in previous version
» Code beautification.
> Bug fixes.
» Performance improvements.
> Additional functionalities.
» Implement improvements
> Make sure code is always clean + easy to maintain.
> Keep detailed records of changes.
> Always keep history of source code evolution
» Performance Evaluation
> bigger input.
> scalability ?

Theoretical — Practical Approach Cycle

Theoretical Results

Analysis

‘Experimental
Evaluation

Algorithm
Engineering

Simulation Implementation

Quality of Code

John Woods

Always code as if the guy who ends up maintaining
your code will be a violent psychopath who knows
where you live.




Recursion Coding Style Factorial Computation: Using Iteration

Recursion is a way of programming or coding a problem, in which a
function calls itself one or more times in its body. Usually, it is
returning the return value of this function call. If a function result = 1

for i in range(2,n+1):

definition fulfils the condition of recursion, we call this function a result *- i
return result

def iterative_factorial(n):

recursive function.

Termination condition:
> A recursive function has to terminate to be used in a program.
» A recursive function terminates, if with every recursive call the
solution of the problem is downsized and moves towards a
base case.
» A base case is a case, where the problem can be solved
without further recursion.

Factorial Computation: Using Recursion Factorial Computation

def factorial(n):
print("factorial has been called with n = " + str(n))
if n == 1:
return 1
else:
res = n * factorial(n-1)
print("intermediate result for ", n, " * factorial("

def factorial(n):
if n ==
return 1
else:
return n * factorial(n-1)

return res

print (factorial(5))




Fibonacci Numbers

The Fibonacci numbers are defined by:
Fp=Fp1+Fo2
where Fp =0and F; =1

» 0,1,1,2,3,5,8,13,21,34,55,89, ...

Factorial Computation: Using Recursion

def fib(n]
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n-1) + fib(n-2)

Factorial Computation: Using Iteration

def fibi(n):
a, b=0,1
for i in range(n):
a,b=b,a+h
return a

Measure Performance

import time

for i in range(1,41):
t1 = time.perf_counter ()
s = £ib(i)
t2 = time.perf_counter() - t1

t3 = time.perf_counter()
s = fibi(i)
t4 = time.perf_counter() - t3

print(f"n={i}, fib: {t2:.2f}, fibi: {t1:.2f}, percent:

{t2/t4:.



Fibonacci Numbers

Factorial Computation: Using Recursion and Memory

memo = {0:0, 1:1}
def fibm(n):

if not n in memo:

memo([n] = fibm(n-1) + fibm(n-2)
return memo [n]




