
Principles of Computer Science II
Algorithms for BioInformatics

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 5

Pebble Game

I Game played in turns by 2 players.
I Two piles of equal number of pebbles.
I Each turn a player may either

I take 1 pebble from a single pile, or
I take 1 pebble from both piles.

I The player that takes the last pebble wins.

Best Strategy for Winning the Pebble Game
I Does the first player always have an advantage?
I Let’s consider the most simplified version.

I Pebbles = 2 – we call this the 2× 2 game.
I Is there a winning strategy?
I What is the winning strategy?

Generaled Strategy for Winning the Pebble Game
I Can we generalize the strategy of the 2× 2 game?
I What about the 3× 3 game?

I Consider different game sequences.
I Consider the n × n game.

I Is there only one winning strategy?
I How easy it is to describe our strategy?
I Quality of solution.



We build a matrix for all game combinations. Four actions:

1. ^ take one pebble from pile A.
2. � take one pebble from pile B.
3. ↖ take one pebble from each pile.
4. * ignore game.

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7
8
9

10

I The first player always loses the 2× 2.
I Clearly also for 0× 2, 0× 4, . . .
I Can we generalize for all games where each pile has an even

number of pebbles?

0 1 2 3 4 5 6 7 8 9 10

0 * * * * * *
1
2 * *
3
4 *
5
6 *
7
8 *
9

10 *

I The first player always loses the 2× 2.
I Clearly also for 0× 2, 0× 4, . . .
I Can we generalize for all games where each pile has an even

number of pebbles?

0 1 2 3 4 5 6 7 8 9 10

0 * * * * * *
1
2 * * * * * *
3
4 * * * * * *
5
6 * * * * * *
7
8 * * * * * *
9

10 * * * * * *

I Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .

I Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?

I What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * * * * * *
1
2 * * * * * *
3
4 * * * * * *
5
6 * * * * * *
7
8 * * * * * *
9

10 * * * * * *



I Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .

I Can we generalize for other columns/rows where one pile has
an odd number of pebbles and the other an even?

I What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * � * � * � * � * � *
1 ^

2 * * * * * *
3 ^

4 * * * * * *
5 ^

6 * * * * * *
7 ^

8 * * * * * *
9 ^

10 * * * * * *

I Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .
I Can we generalize for other columns/rows where one pile has

an odd number of pebbles and the other an even?

I What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * � * � * � * � * � *
1 ^ ^ ^ ^ ^ ^

2 * � * � * � * � * � *
3 ^ ^ ^ ^ ^ ^

4 * � * � * � * � * � *
5 ^ ^ ^ ^ ^ ^

6 * � * � * � * � * � *
7 ^ ^ ^ ^ ^ ^

8 * � * � * � * � * � *
9 ^ ^ ^ ^ ^ ^

10 * � * � * � * � * � *

I Only 1 option for all 0× 1, 0× 3, . . . and 1× 0, 3× 0, . . .
I Can we generalize for other columns/rows where one pile has

an odd number of pebbles and the other an even?
I What about the other rows/columns?

0 1 2 3 4 5 6 7 8 9 10

0 * � * � * � * � * � *
1 ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^

2 * � * � * � * � * � *
3 ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^

4 * � * � * � * � * � *
5 ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^

6 * � * � * � * � * � *
7 ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^

8 * � * � * � * � * � *
9 ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^ ↖ ^

10 * � * � * � * � * � *

An algorithmic approach for winning the Pebble Game
I How can we build the matrix for any game size, e.g., 20× 20
I What is the algorithm for winning the game?

I Why should I care?
I It is the sequence alignment problem.
I The computational idea used to solve both problems is the

same.
I We need to understand how algorithms work.



An algorithmic approach for winning the Pebble Game
I How can we build the matrix for any game size, e.g., 20× 20
I What is the algorithm for winning the game?
I Why should I care?

I It is the sequence alignment problem.
I The computational idea used to solve both problems is the

same.
I We need to understand how algorithms work.

An algorithmic approach for winning the Pebble Game
I How can we build the matrix for any game size, e.g., 20× 20
I What is the algorithm for winning the game?
I Why should I care?
I It is the sequence alignment problem.
I The computational idea used to solve both problems is the

same.
I We need to understand how algorithms work.

Methodology of solving a computational problem
I What is the problem at hand ?

I Identify & Understand assumptions.
I What is our goal ?
I Identify similar problems/solutions in the bibliography
I What are the theoretical foundation ?
I Can we formulate the problem in a unambiguous and precise

way ?
I What is the Input that we have ?

I Do we have enough data or should we try to collect?
I Open data sets ?
I Can we synthesize input data ?

I What is the expected Output ?

Solution Sketch
I Do we have a rough idea of a solution ?
I Do we have identified an approach to solving the problem ?

I think again !
I go through the definition – maybe we overlooked something ?

I Write down a solution sketch
I check if it adheres to the initial assumptions
I can you try it out with a small input ?

I Is the solution correct ? can we provide some arguments ?
I What is the performance of the solution ?
I Can we think of a more efficient solution ?



Implement the first version
I Pick your programming language of choice.
I Implement your solution

I No need to try to make it elegant / fast.
I Remember Donalt Knuth: There is no such thing as early

optimization.
I Get some input data

I Open datasets
I Small size

I Limited Evaluation
I does it work ?
I do you need to make any modifications ?
I are there special cases that you missed ?

Iterative approach
I Step-by-step development

I Continuous development.
I Agile methodology.

I Identify issues in previous version
I Code beautification.
I Bug fixes.
I Performance improvements.
I Additional functionalities.

I Implement improvements
I Make sure code is always clean + easy to maintain.
I Keep detailed records of changes.
I Always keep history of source code evolution.

I Performance Evaluation
I bigger input.
I scalability ?

Theoretical – Practical Approach Cycle Quality of Code

John Woods
Always code as if the guy who ends up maintaining
your code will be a violent psychopath who knows
where you live.



Recursion Coding Style

Recursion is a way of programming or coding a problem, in which a
function calls itself one or more times in its body. Usually, it is
returning the return value of this function call. If a function
definition fulfils the condition of recursion, we call this function a
recursive function.

Termination condition:
I A recursive function has to terminate to be used in a program.
I A recursive function terminates, if with every recursive call the

solution of the problem is downsized and moves towards a
base case.

I A base case is a case, where the problem can be solved
without further recursion.

Factorial Computation: Using Iteration

def iterative_factorial(n):

result = 1

for i in range(2,n+1):

result *= i

return result

Factorial Computation: Using Recursion

def factorial(n):

if n == 1:

return 1

else:

return n * factorial(n-1)

Factorial Computation

def factorial(n):

print("factorial has been called with n = " + str(n))

if n == 1:

return 1

else:

res = n * factorial(n-1)

print("intermediate result for ", n, " * factorial(" ,n-1, "): ",res)

return res

print(factorial(5))



Fibonacci Numbers

The Fibonacci numbers are defined by:
Fn = Fn−1 + Fn−2

where F0 = 0 and F1 = 1

I 0,1,1,2,3,5,8,13,21,34,55,89, . . .

Factorial Computation: Using Recursion

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

Factorial Computation: Using Iteration

def fibi(n):

a, b = 0, 1

for i in range(n):

a, b = b, a + b

return a

Measure Performance

import time

for i in range(1,41):

t1 = time.perf_counter()

s = fib(i)

t2 = time.perf_counter() - t1

t3 = time.perf_counter()

s = fibi(i)

t4 = time.perf_counter() - t3

print(f"n={i}, fib: {t2:.2f}, fibi: {t1:.2f}, percent: {t2/t4:.2f}")



Fibonacci Numbers Factorial Computation: Using Recursion and Memory

memo = {0:0, 1:1}

def fibm(n):

if not n in memo:

memo[n] = fibm(n-1) + fibm(n-2)

return memo[n]


