Principles of Computer Science II

Sequence Similarity

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 6

Transform one English word v into another word w by going through a series of intermediate English words, where each word in the sequence differs from the next by only one substitution (1 character).

• Given two words v, w and a dictionary, find out whether the

- Given two words v, w and a dictionary, find out whether the words are equivalent.
 Your program should output the series of transformations for
- v to become w
- Use the following dictionary: https://goo.gl/hBvqqr
- Example: To transform head into tail one can use four intermediates:

 $\mathsf{head} \to \mathsf{heal} \to \mathsf{teal} \to \mathsf{tell} \to \mathsf{tall} \to \mathsf{tail}$

40 × 40 × 42 × 42 × 2 × 90

1011/01/12 12 13 13 13

Generalized Equivalent Words

Find an algorithm to solve a generalization of the Equivalent Words problem when insertions, deletions, and substitutions are allowed (rather than only substitutions).

- Given two words v, w and a dictionary, find out whether the words are equivalent.
- Your program should output the series of transformations for v to become w
- Use the following dictionary: https://goo.gl/hBvqqr
 Example: To transform head into tea one can use four intermediates:

 $\mathsf{head} \to \mathsf{heal} \to \mathsf{teal} \to \mathsf{tea}$

- We looked for repeating patterns within DNA sequences.
 How can we measure the similarity between different
- How can we measure the similarity between different sequences?
- We use the notion of Vladimir Levenshtein introduced in 1966
 Edit distance the minimum number of editing operations needed to transform one string into another (insert/delete
- symbol or substitute one symbol for another).

Alignment of ATATATAT vs TATATATA

(B) (B) (2) (2) (2)

A T A 1	arity ATATATAT vs TATAAT F A T A T E E E E E F A - A T		Sequence Sir Alignment TGCATAT TGCATA TGCATA TGCATA ATGCAT ATGCAT ATCCAT ATCCAT ATCCAT ATCCAT	of TGCATAT vs ATCCGAT delete last T delete last A insert A at the front substitute C for G in the third position insert a G before the last A	
			Five operation	ons.	
		< 0 > 6 > (2 > (2 > 2) 2 < 9 < 2 > 2 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 < 9 <		(0) (0) (2) (2)	\$ 294 G
Sequence Simil	arity		Edit Distance	e	
	TGCATAT vs ATCCGAT insert A at the front delete T in the sixth position substitute G for A in the fift substitute C for G in the thin	h position		ir Levenshtein defined the notion of Edit distance to provide an algorithm to compute it.	
		101101111111111111111111111111111111111	2	< a> < a> < 2> < 2> < 2> < 2> < 2> < 2>	2 990

Edit Distance Algorithm using Dynamic Programming Assume two strings:

▶ The alignment of v, w is a two-row matrix such that

first row: contains the characters of v (in order)

second row: contains the characters of w (in order)

- v (of n characters) w (of m characters)
- spaces are interpersed throughout the table. Characters in each string appear in order, though not necessarily adjacently.

Α	Т	-	G	T	Т	Α	T	-
Α	Т	С	G	Т	-	Α	-	С

No column contains spaces in both rows. At most n + m columns.

Edit Distance Algorithm using Dynamic Programming

Matches - columns with the same letter. Mismatches – columns with different letters. Columns containing one space are called indels

Space on top row: insertions Space on bottom row: deletions

matches + # mismatches + # indels < n + m

4 m x 4 m x 4 2 x 4 2 x 2 x 4 9 0 0

Representing the rows

- One way to represent v ▶ AT_CGTAT_
- One way to represent w ATCGT-A-C
- Another way to represent v
 - ▶ AT_CGTAT_
 - 122345677
 - number of symbols of v present up to a given position
- Similarly, to represent w
 - ATCGT-A-C
 - 123455667

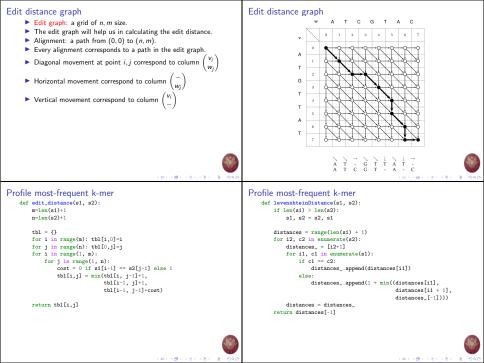
	•	, ,	٠.	1	1 ~	'			<u> </u>		•	, ,				
٦	w	Α	Т	С	G	П	T	Т	-		Α		-		C	
Ξ						_	_		_		_		_		1	
	v	1	2	2	3	4	1	5		6		7		7		
7	w	1	2	3	4	,	5	5	T	6	T	6	Τ	7	1	
_		he v		.d		_		a:		*.	:.		· .	di		

V A T - G T T A T

viewed as a coordinate in 2-dimensional $n \times m$ grid: $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix}$

The entire alignment is simply a path:

 $(0,0) \rightarrow (1,1) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (3,4) \rightarrow (4,5) \rightarrow (5,5) \rightarrow$


 $(6,6) \rightarrow (7,6) \rightarrow (7,7)$

Representing the rows

101 (8) (2) (2) (3) 3 (9)

4 m x 4 m x 4 2 x 4 2 x 1 2 1 40 4 0

