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Machine Learning Basics

• Artificial Intelligence is a scientific field concerned with the development of 
algorithms that allow computers to learn without being explicitly programmed

• Machine Learning is a branch of Artificial Intelligence, which focuses on 
methods that learn from data and make predictions on unseen data
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Machine Learning Types

• Supervised: learning with labeled data
§ Example: email classification, image classification
§ Example: regression for predicting real-valued outputs

• Unsupervised: discover patterns in unlabeled data
§ Example: cluster similar data points

• Reinforcement learning: learn to act based on feedback/reward
§ Example: learn to play Go  
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Supervised Learning

• Supervised learning categories and techniques
§ Numerical classifier functions

o Linear classifier, perceptron, logistic regression, support vector machines (SVM), neural 
networks 

§ Parametric (probabilistic) functions 
o Naïve Bayes, Gaussian discriminant analysis (GDA), hidden Markov models (HMM), 

probabilistic graphical models 
§ Non-parametric (instance-based) functions

o k-nearest neighbors, kernel regression, kernel density estimation, local regression
§ Symbolic functions

o Decision trees, classification and regression trees (CART)
§ Aggregation (ensemble) learning

o Bagging, boosting (Adaboost), random forest 
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Unsupervised Learning 

• Unsupervised learning categories and techniques
§ Clustering

o k-means clustering
o Mean-shift clustering
o Spectral clustering 

§ Density estimation 
o Gaussian mixture model (GMM) 
o Graphical models 

§ Dimensionality reduction 
o Principal component analysis (PCA) 
o Factor analysis 
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Nearest Neighbor Classifier

• Nearest Neighbor – for each test data point, assign the class label of the nearest 
training data point
§ Adopt a distance function to find the nearest neighbor

o Calculate the distance to each data point in the training set, and assign the class of the nearest 
data point (minimum distance)

§ It does not require learning a set of weights

Machine Learning Basics
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Nearest Neighbor Classifier

• For image classification, the distance between all pixels is calculated (e.g., using 
ℓ! norm, or ℓ" norm)
§ Accuracy on CIFAR-10: 38.6%

• Disadvantages:
§ The classifier must remember all training data and store it for future comparisons with 

the test data
§ Classifying a test image is expensive since it requires a comparison to all training 

images
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k-Nearest Neighbors Classifier

• k-Nearest Neighbors approach considers multiple neighboring data points to 
classify a test data point
§ E.g., 3-nearest neighbors 

o The test example in the figure is the + mark
o The class of the test example is obtained by voting (based on the distance to the 3 closest 

points)
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Linear Classifier

• Linear classifier
§ Find a linear function f of the inputs xi that separates the classes

𝑓 𝑥" ,𝑊, 𝑏 = 𝑊𝑥" + 𝑏

§ Use pairs of inputs and labels to find the weights matrix W and the bias vector b
o The weights and biases are the parameters of the function f

§ Several methods have been used to find the optimal set of parameters of a linear 
classifier 
o A common method of choice is the Perceptron algorithm, where the parameters are updated 

until a minimal error is reached (single layer, does not use backpropagation)
§ Linear classifier is a simple approach, but it is a building block of advanced 

classification algorithms, such as SVM and neural networks
o Earlier multi-layer neural networks were referred to as multi-layer perceptrons (MLPs)
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Linear Classifier

• The decision boundary is linear
§ A straight line in 2D, a flat plane in 3D, a hyperplane in 3D and 

higher dimensional space
• Example: classify an input image

§ The selected parameters in this example are not good, because the 
predicted cat score is low
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Support Vector Machines

• Support vector machines (SVM)
§ How to find the best decision boundary?

o All lines in the figure correctly separate the 2 classes
o The line that is farthest from all training examples 

will have better generalization capabilities
§ SVM solves an optimization problem:

o First, identify a decision boundary that correctly 
classifies the examples
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o Next, increase the geometric margin between the 
boundary and all examples 

§ The data points that define the maximum 
margin width are called support vectors

§ Find W and b by solving:



Linear vs Non-linear Techniques

• Linear classification techniques
§ Linear classifier
§ Perceptron
§ Logistic regression
§ Linear SVM
§ Naïve Bayes

• Non-linear classification techniques
§ k-nearest neighbors
§ Non-linear SVM
§ Neural networks
§ Decision trees
§ Random forest

Linear vs Non-linear Techniques



Linear vs Non-linear Techniques

• For some tasks, input data 
can be linearly separable, 
and linear classifiers can be 
suitably applied

• For other tasks, linear 
classifiers may have 
difficulties to produce 
adequate decision 
boundaries 

Linear vs Non-linear Techniques
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Non-linear Techniques

• Non-linear classification
§ Features 𝑧" are obtained as non-linear functions of the inputs 𝑥"
§ It results in non-linear decision boundaries
§ Can deal with non-linearly separable data

Linear vs Non-linear Techniques
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Non-linear Support Vector Machines

• Non-linear SVM
§ The original input space is mapped to a higher-dimensional feature space where the 

training set is linearly separable
§ Define a non-linear kernel function to calculate a non-linear decision boundary in the 

original feature space

Linear vs Non-linear Techniques
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Binary vs Multi-class Classification

• A classification problem with only 2 classes is referred to as binary classification
§ The output labels are 0 or 1
§ E.g., benign or malignant tumor, spam or no-spam email

• A problem with 3 or more classes is referred to as multi-class classification

Binary vs Multi-class Classification



Binary vs Multi-class Classification

• Both the binary and multi-class classification problems can be linearly or non-
linearly separated
§ Figure: linearly and non-linearly separated data for binary classification problem

Binary vs Multi-class Classification



Computer Vision Tasks

• Computer vision has been the primary area of interest for ML
• The tasks include: classification, localization, object detection, instance 

segmentation
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ML vs. Deep Learning

• Conventional machine learning methods rely on human-designed feature 
representations
§ ML becomes just optimizing weights to best make a final prediction

Introduction to Deep Learning
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ML vs. Deep Learning

• Deep learning (DL) is a machine learning subfield that uses multiple layers for 
learning data representations
§ DL is exceptionally effective at learning patterns
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ML vs. Deep Learning

• DL applies a multi-layer process for learning rich hierarchical  features (i.e., data 
representations)
§ Input image pixels → Edges → Textures → Parts → Objects
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Why is DL Useful?

• DL provides a flexible, learnable framework for representing visual, text, 
linguistic information
§ Can learn in supervised and unsupervised manner

• DL represents an effective end-to-end learning system
• Requires large amounts of training data
• Since about 2010, DL has outperformed other ML techniques

§ First in vision and speech, then NLP, and other applications

Introduction to Deep Learning



Representational Power

• NNs with at least one hidden layer are universal approximators
§ Given any continuous function h(x) and some 𝜖 > 0, there exists a NN with one 

hidden layer (and with a reasonable choice of non-linearity) described with the 
function f(x), such that ∀𝑥, ℎ 𝑥 − 𝑓(𝑥) < 𝜖

§ I.e., NN can approximate any arbitrary complex continuous function

Introduction to Deep Learning

• NNs use nonlinear mapping of the inputs x to the 
outputs f(x) to compute complex decision boundaries

• But then, why use deeper NNs?
§ The fact that deep NNs work better is an empirical 

observation
§ Mathematically, deep NNs have the same 

representational power as a one-layer NN



Introduction to Neural Networks 

• Handwritten digit recognition (MNIST dataset)
§ The intensity of each pixel is considered an input element
§ Output is the class of the digit
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Introduction to Neural Networks 

• Handwritten digit recognition
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Elements of Neural Networks 

• NNs consist of hidden layers with neurons (i.e., computational units)
• A single neuron maps a set of inputs into an output number, or 𝑓: 𝑅% → 𝑅

Introduction to Neural Networks

bwawawaz KK ++++= !2211

z

1w

2w

Kw…

1a

2a

Ka

+

b

( )zs

bias

a

Activation 
functionweights

𝑎 = 𝜎 𝑧

input

output

…
Slide credit: Hung-yi Lee – Deep Learning Tutorial



Elements of Neural Networks 

• A NN with one hidden layer and one output layer
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Elements of Neural Networks 

• A neural network playground link

Introduction to Neural Networks

http://playground.tensorflow.org/


Elements of Neural Networks 

• Deep NNs have many hidden layers
§ Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)
§ Each neuron is connected to all neurons in the succeeding layer
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Elements of Neural Networks 

• A simple network, toy example
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Elements of Neural Networks 

• A simple network, toy example (cont’d)
§ For an input vector [1 −1]#, the output is [0.62 0.83]#
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Matrix Operation

• Matrix operations are helpful when working with multidimensional inputs and 
outputs
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Matrix Operation

• Multilayer NN, matrix calculations for the first layer
§ Input vector x, weights matrix W1, bias vector b1, output vector a1
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Matrix Operation

• Multilayer NN, matrix calculations for all layers
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Matrix Operation

• Multilayer NN, function f maps inputs x to outputs y, i.e., 𝑦 = 𝑓(𝑥)
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Softmax Layer

• In multi-class classification tasks, the output layer is typically a softmax layer
§ I.e., it employs a softmax activation function
§ If a layer with a sigmoid activation function is used as the output layer instead, the 

predictions by the NN may not be easy to interpret
o Note that an output layer with sigmoid activations can still be used for binary classification 

Introduction to Neural Networks
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Softmax Layer

• The softmax layer applies softmax activations to output 
a probability value in the range [0, 1]
§ The values z inputted to the softmax layer are referred to as 

logits
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Activation Functions

• Non-linear activations are needed to learn complex (non-linear) data 
representations
§ Otherwise, NNs would be just a linear function (such as W!W$𝑥 = 𝑊𝑥) 
§ NNs with large number of layers (and neurons) can approximate more complex 

functions 
o Figure: more neurons improve representation (but, may overfit)
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Activation: Sigmoid

• Sigmoid function σ: takes a real-valued number and “squashes” it into the range 
between 0 and 1
§ The output can be interpreted as the firing rate of a biological neuron

o Not firing = 0; Fully firing = 1
§ When the neuron’s activation are 0 or 1, sigmoid neurons saturate

o Gradients at these regions are almost zero (almost no signal will flow) 
§ Sigmoid activations are less common in modern NNs

Introduction to Neural Networks
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Activation: Tanh

• Tanh function: takes a real-valued number and “squashes” it into range between 
-1 and 1
§ Like sigmoid, tanh neurons saturate
§ Unlike sigmoid, the output is zero-centered

o It is therefore preferred than sigmoid
§ Tanh is a scaled sigmoid: tanh(𝑥) = 2 A 𝜎(2𝑥) − 1

Introduction to Neural Networks
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Activation: ReLU

• ReLU (Rectified Linear Unit): takes a real-valued number and thresholds it at 
zero

𝑓 𝑥 = max(0, 𝑥)

Introduction to Neural Networks

§ Most modern deep NNs use ReLU
activations 

§ ReLU is fast to compute 
o Compared to sigmoid, tanh 
o Simply threshold a matrix at zero

§ Accelerates the convergence of gradient 
descent
o Due to linear, non-saturating form 

§ Prevents the gradient vanishing problem
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Activation: Leaky ReLU

• The problem of ReLU activations: they can “die”
§ ReLU could cause weights to update  in a way that the gradients can become zero and 

the neuron will not activate again on any data 
§ E.g., when a large learning rate is used

• Leaky ReLU activation function is a variant of ReLU
§ Instead of the function being 0 when 𝑥 < 0, a leaky ReLU has a small negative slope 

(e.g., α = 0.01, or similar)
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𝑓 𝑥 = C𝛼𝑥 for 𝑥 < 0
𝑥 for 𝑥 ≫ 0

§ This resolves the dying ReLU problem
§ Most current works still use ReLU

o With a proper setting of the learning rate, 
the problem of dying ReLU can be avoided



Activation: Linear Function

• Linear function means that the output signal is proportional to the input signal 
to the neuron
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𝑓 𝑥 = 𝑐𝑥

ℝ$ → ℝ$
§ If the value of the constant c is 1, it is also 

called identity activation function
§ This activation type is used in regression 

problems
o E.g., the last layer can have linear activation 

function, in order to output a real number 
(and not a class membership)



Training NNs

• The network parameters 𝜃 include the weight matrices and bias vectors from all 
layers

§ Often, the model parameters 𝜃 are referred to as weights
• Training a model to learn a set of parameters 𝜃 that are optimal (according to a 

criterion) is one of the greatest challenges in ML
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Training NNs

• Data preprocessing - helps convergence during training
§ Mean subtraction, to obtain zero-centered data

o Subtract the mean for each individual data dimension (feature)
§ Normalization

o Divide each feature by its standard deviation
– To obtain standard deviation of 1 for each data dimension (feature)

o Or, scale the data within the range [0,1] or [-1, 1]
– E.g., image pixel intensities are divided by 255 to be scaled in the [0,1] range

Training Neural Networks
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Training NNs

• To train a NN, set the parameters 𝜃 such that for a training subset of images, the 
corresponding elements in the predicted output have maximum values
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Training NNs

• Define a loss function/objective function/cost function ℒ 𝜃 that calculates the 
difference (error) between the model prediction and the true label
§ E.g., ℒ 𝜃 can be mean-squared error, cross-entropy, etc.
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Training NNs

• For a training set of 𝑁 images, calculate the total loss overall all images: ℒ 𝜃 =
∑$)!* ℒ$ 𝜃

• Find the optimal parameters 𝜃∗ that minimize the total loss ℒ 𝜃

Training Neural Networks

x1

x2

xN

NN

NN

NN

…
…

…
…

y1

y2

yN

9𝑦J

9𝑦K

9𝑦N

ℒJ 𝜃

…
…

…
…

x3 NN y39𝑦O

ℒK 𝜃

ℒO 𝜃

ℒP 𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial



Loss Functions

• Classification tasks

Training Neural Networks
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Loss Functions

• Regression tasks

Training Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

Training 
examples

Output 
Layer

Loss function
Mean Squared Error ℒ 𝜃 =

1
𝑛
W
#)!

$

𝑦(#) − X𝑦(#) "

Linear (Identity) or Sigmoid Activation

Mean Absolute Error ℒ 𝜃 =
1
𝑛
W
#)!

$

𝑦(#) − X𝑦(#)

Pairs of 𝑁 inputs 𝑥! and ground-truth output values 𝑦!



Training NNs

• Optimizing the loss function ℒ 𝜃
§ Almost all DL models these days are trained with a variant of the gradient descent 

(GD) algorithm
§ GD applies iterative refinement of the network parameters 𝜃
§ GD uses the opposite direction of the gradient of the loss with respect to the NN 

parameters (i.e.,𝛻ℒ 𝜃 = ⁄𝜕ℒ 𝜕𝜃" ) for updating  𝜃
o The gradient of the loss function 𝛻ℒ 𝜃 gives the direction of fastest increase of the loss 

function ℒ 𝜃 when the parameters 𝜃 are changed

Training Neural Networks
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Gradient Descent Algorithm

• Steps in the gradient descent algorithm:
1. Randomly initialize the model parameters, 𝜃%

2. Compute the gradient of the loss function at the initial parameters 𝜃%: 𝛻ℒ 𝜃%

3. Update the parameters as: 𝜃&'( = 𝜃% − 𝛼𝛻ℒ 𝜃%

o Where α is the learning rate
4. Go to step 2 and repeat (until a terminating criterion is reached)
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Gradient Descent Algorithm

• Example: a NN with only 2 parameters 𝑤! and 𝑤", i.e., 𝜃 = 𝑤!, 𝑤"
§ The different colors represent the values of the loss (minimum loss 𝜃∗ is ≈ 1.3)
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𝑤J

𝑤K

2. Compute the 
gradient at 𝜃0, 𝛻ℒ 𝜃0

𝜃W

3. Times the learning 
rate 𝜂, and update 𝜃,
𝜃$12 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

𝜃J

1. Randomly pick a 
starting point 𝜃0

4. Go to step 2, repeat
−𝛻ℒ 𝜃W

𝜃J =
𝜃W − 𝛼𝛻ℒ 𝜃W

𝜃∗

𝛻ℒ 𝜃0 = 𝜕ℒ 𝜃0 /𝜕𝑤!
𝜕ℒ 𝜃0 /𝜕𝑤"

Slide credit: Hung-yi Lee – Deep Learning Tutorial



Gradient Descent Algorithm

• Example (contd.)
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𝑤J

𝑤K

𝜃W

𝜃J
𝜃J − 𝛼𝛻ℒ 𝜃J 𝜃K − 𝛼𝛻ℒ 𝜃K

𝜃K

Eventually, we would reach a minimum …..

Slide credit: Hung-yi Lee – Deep Learning Tutorial

2. Compute the gradient 
at 𝜃345, 𝛻ℒ 𝜃345

3. Times the learning rate 𝜂, 
and update 𝜃,
𝜃$12 = 𝜃345 − 𝛼𝛻ℒ 𝜃345

4. Go to step 2, repeat



Gradient Descent Algorithm

• Gradient descent algorithm stops when a local minimum of the loss surface is 
reached
§ GD does not guarantee reaching a global minimum
§ However, empirical evidence suggests that GD works well for NNs

Training Neural Networks

ℒ 𝜃

𝜃

Picture from: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/


Gradient Descent Algorithm

• For most tasks, the loss surface ℒ 𝜃 is highly complex (and non-convex)

Training Neural Networks

ℒ

𝑤. 𝑤+

Slide credit: Hung-yi Lee – Deep Learning Tutorial

• Random initialization in NNs results 
in different initial parameters 𝜃0
every time the NN is trained
§ Gradient descent may reach different 

minima at every run
§ Therefore, NN will produce different 

predicted outputs 
• In addition, currently we don’t have 

algorithms that guarantee reaching a 
global minimum for an arbitrary loss 
function



Backpropagation

• Modern NNs employ the backpropagation method for calculating the gradients 
of the loss function 𝛻ℒ 𝜃 = ⁄𝜕ℒ 𝜕𝜃#
§ Backpropagation is short for “backward propagation”

• For training NNs, forward propagation (forward pass) refers to passing the 
inputs 𝑥 through the hidden layers to obtain the model outputs (predictions) 𝑦
§ The loss ℒ 𝑦, R𝑦 function is then calculated 
§ Backpropagation traverses the network in reverse order, from the outputs 𝑦 backward 

toward the inputs 𝑥 to calculate the gradients of the loss 𝛻ℒ 𝜃
§ The chain rule is used for calculating the partial derivatives of the loss function with 

respect to the parameters 𝜃 in the different layers in the network
• Each update of the model parameters 𝜃 during training takes one forward and 

one backward pass (e.g., of a batch of inputs)
• Automatic calculation of the gradients (automatic differentiation) is available in 

all current deep learning libraries
§ It significantly simplifies the implementation of deep learning algorithms, since it 

obviates deriving the partial derivatives of the loss function by hand

Training Neural Networks



Mini-batch Gradient Descent

• It is wasteful to compute the loss over the entire training dataset to perform a 
single parameter update for large datasets
§ E.g., ImageNet has 14M images
§ Therefore, GD (a.k.a. vanilla GD) is almost always replaced with mini-batch GD

• Mini-batch gradient descent
§ Approach:

o Compute the loss ℒ 𝜃 on a mini-batch of images, update the parameters 𝜃, and repeat until 
all images are used

o At the next epoch, shuffle the training data, and repeat the above process
§ Mini-batch GD results in much faster training
§ Typical mini-batch size: 32 to 256 images
§ It works because the gradient from a mini-batch is a good approximation of the 

gradient from the entire training set

Training Neural Networks



Stochastic Gradient Descent

• Stochastic gradient descent
§ SGD uses mini-batches that consist of a single input example

o E.g., one image mini-batch
§ Although this method is very fast, it may cause significant fluctuations in the loss 

function
o Therefore, it is less commonly used, and mini-batch GD is preferred

§ In most DL libraries, SGD typically means a mini-batch GD (with an option to add 
momentum)

Training Neural Networks



Problems with Gradient Descent

• Besides the local minima problem, the GD algorithm can be very slow at 
plateaus, and it can get stuck at saddle points

Training Neural Networks

cost ℒ 𝜃

Very slow at the plateau

Stuck at a local minimum

𝛻ℒ 𝜃 = 0

Stuck at a saddle point

𝛻ℒ 𝜃 = 0𝛻ℒ 𝜃 ≈ 0

𝜃
Slide credit: Hung-yi Lee – Deep Learning Tutorial



Gradient Descent with Momentum

• Gradient descent with momentum uses the momentum of the gradient for 
parameter optimization

Training Neural Networks

Movement = Negative of Gradient + Momentum 

Gradient = 0

Negative of Gradient
Momentum
Real Movement

cost ℒ 𝜃

𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial



Gradient Descent with Momentum

• Parameters update in GD with momentum at iteration 𝑡: 𝜃6 = 𝜃67! − 𝑉6
o Where: 𝑉)= 𝛽𝑉)*# + 𝛼𝛻ℒ 𝜃)*#

o I.e., 𝜃) = 𝜃)*# − 𝛼𝛻ℒ 𝜃)*# − 𝛽𝑉)*#

• Compare to vanilla GD: 𝜃6 = 𝜃67! − 𝛼𝛻ℒ 𝜃67!

§ Where 𝜃+,! are the parameters from the previous iteration 𝑡 − 1
• The term 𝑉6 is called momentum

§ This term accumulates the gradients from the past several steps, i.e., 
𝑉)= 𝛽𝑉)*# + 𝛼𝛻ℒ 𝜃)*#

= 𝛽 𝛽𝑉)*+ + 𝛼𝛻ℒ 𝜃)*+ + 𝛼𝛻ℒ 𝜃)*#
= 𝛽+𝑉)*+ + 𝛽𝛼𝛻ℒ 𝜃)*+ + 𝛼𝛻ℒ 𝜃)*#

= 𝛽,𝑉)*, + 𝛽+𝛼𝛻ℒ 𝜃)*, + 𝛽𝛼𝛻ℒ 𝜃)*+ + 𝛼𝛻ℒ 𝜃)*#

§ This term is analogous to a momentum of a heavy ball rolling down the hill 
• The parameter 𝛽 is referred to as a coefficient of momentum

§ A typical value of the parameter 𝛽 is 0.9
• This method updates the parameters 𝜃 in the direction of the weighted average 

of the past gradients

Training Neural Networks



Nesterov Accelerated Momentum

• Gradient descent with Nesterov accelerated momentum 
§ Parameter update: 𝜃+ = 𝜃+,! − 𝑉+

o Where: 𝑉)= 𝛽𝑉)*# + 𝛼𝛻ℒ 𝜃)*# + 𝛽𝑉)*#

§ The term 𝜃+,! + 𝛽𝑉+,! allows to predict the position of the parameters in the next step 
(i.e., 𝜃+ ≈ 𝜃+,! + 𝛽𝑉+,!)

§ The gradient is calculated with respect to the approximate future position of the 
parameters in the next iteration, 𝜃+, calculated at iteration 𝑡 − 1

Training Neural Networks

Picture from: https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12

GD with momentum GD with Nesterov
momentum

https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12


Adam

• Adaptive Moment Estimation (Adam)
§ Adam combines insights from the momentum optimizers that accumulate the values 

of past gradients, and it also introduces new terms based on the second moment of the 
gradient
o Similar to GD with momentum, Adam computes a weighted average of past gradients (first 

moment of the gradient), i.e., 𝑉)= 𝛽#𝑉)*# + 1 − 𝛽# 𝛻ℒ 𝜃)*#

o Adam also computes a weighted average of past squared gradients (second moment of the 
gradient), , i.e., 𝑈)= 𝛽+𝑈)*# + 1 − 𝛽+ 𝛻ℒ 𝜃)*#

+

§ The parameter update is:𝜃+ = 𝜃+,! − 𝛼
-.!

-/!01

o Where: 4𝑉) = -!

#*."
and 5𝑈) = /!

#*.#
o The proposed default values are 𝛽# = 0.9, 𝛽+ = 0.999, and 𝜖 = 10*0

• Other commonly used optimization methods include:
§ Adagrad, Adadelta, RMSprop, Nadam, etc.
§ Most commonly used optimizers nowadays are Adam and SGD with momentum

Training Neural Networks



Learning Rate

• Learning rate
§ The gradient tells us the direction in which the loss has the steepest rate of increase, 

but it does not tell us how far along the opposite direction we should step
§ Choosing the learning rate (also called the step size) is one of the most important 

hyper-parameter settings for NN training

Training Neural Networks

LR too 
small

LR too 
large



Learning Rate

• Training loss for different learning rates
§ High learning rate: the loss increases or plateaus too quickly
§ Low learning rate: the loss decreases too slowly (takes many epochs to reach a 

solution)

Training Neural Networks

Picture from: https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/


Learning Rate Scheduling

• Learning rate scheduling is applied to change the values of the learning rate 
during the training
§ Annealing is reducing the learning rate over time (a.k.a. learning rate decay)

o Approach 1: reduce the learning rate by some factor every few epochs
– Typical values: reduce the learning rate by a half every 5 epochs, or divide by 10 every 20 epochs

o Approach 2: exponential or cosine decay gradually reduce the learning rate over time
o Approach 3: reduce the learning rate by a constant (e.g., by half) whenever the validation loss 

stops improving
– In TensorFlow: tf.keras.callbacks.ReduceLROnPleateau()
» Monitor: validation loss, factor: 0.1 (i.e., divide by 10), patience: 10 (how many epochs to wait before applying it), 

Minimum learning rate: 1e-6 (when to stop)

§ Warmup is gradually increasing the learning rate initially, and afterward let it cool 
down until the end of the training

Training Neural Networks

Exponential decay Cosine decay Warmup



Vanishing Gradient Problem

• In some cases, during training, the gradients can become either very small 
(vanishing gradients) of very large (exploding gradients)
§ They result in very small or very large update of the parameters
§ Solutions: change learning rate, ReLU activations, regularization, LSTM units in RNNs

Training Neural Networks
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Small gradients, learns very slow

Slide credit: Hung-yi Lee – Deep Learning Tutorial



Generalization

• Underfitting
§ The model is too “simple” to represent 

all the relevant class characteristics
§ E.g., model with too few parameters
§ Produces high error on the training set 

and high error on the validation set

• Overfitting
§ The model is too “complex” and fits 

irrelevant characteristics (noise) in the 
data

§ E.g., model with too many parameters
§ Produces low error on the training error 

and high error on the validation set

Generalization



Overfitting

• Overfitting – a model with high capacity fits the noise in the data instead of the 
underlying relationship

Generalization

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

• The model may fit the training data 
very well, but fails to generalize to new 
examples (test or validation data)

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png


Regularization: Weight Decay

• ℓ𝟐 weight decay
§ A regularization term that penalizes large weights is added to the loss function

ℒ]^_ 𝜃 = ℒ 𝜃 + 𝜆A
`

𝜃`K

§ For every weight in the network, we add the regularization term to the loss value
o During gradient descent parameter update, every weight is decayed linearly toward zero

§ The weight decay coefficient 𝜆 determines how dominant the regularization is during 
the gradient computation

Regularization

Data loss Regularization loss



Regularization: Weight Decay

• Effect of the decay coefficient 𝜆
§ Large weight decay coefficient → penalty for weights with large values

Regularization



Regularization: Weight Decay

• ℓ𝟏 weight decay
§ The regularization term is based on the ℓ! norm of the weights

ℒ]^_ 𝜃 = ℒ 𝜃 + 𝜆∑` 𝜃`
§ ℓ! weight decay is less common with NN

o Often performs worse than ℓ+ weight decay
§ It is also possible to combine ℓ! and ℓ$ regularization 

o Called elastic net regularization

ℒ819 𝜃 = ℒ 𝜃 + 𝜆!∑: 𝜃: + 𝜆"∑: 𝜃:"

Regularization



Regularization: Dropout

• Dropout
§ Randomly drop units (along with their connections) during training
§ Each unit is retained with a fixed dropout rate p, independent of other units 
§ The hyper-parameter p needs to be chosen (tuned)

o Often, between 20% and 50% of the units are dropped

Regularization

Slide credit: Hung-yi Lee – Deep Learning Tutorial



Regularization: Dropout

• Dropout is a kind of ensemble learning
§ Using one mini-batch to train one network with a slightly different 

architecture

Regularization

minibatch
1

minibatch
2

minibatch
3

minibatch
n

…
…

Slide credit: Hung-yi Lee – Deep Learning Tutorial



Regularization: Early Stopping

• Early-stopping
§ During model training, use a validation set

o E.g., validation/train ratio of about 25% to 75%
§ Stop when the validation accuracy (or loss) has not improved after n epochs

o The parameter n is called patience

Regularization

Stop training

validation



Batch Normalization

• Batch normalization layers act similar to the data preprocessing steps 
mentioned earlier
§ They calculate the mean µ and variance σ of a batch of input data, and normalize the 

data x to a zero mean and unit variance
§ I.e., R𝑥 = 2,3

4

• BatchNorm layers alleviate the problems of proper initialization of the 
parameters and hyper-parameters
§ Result in faster convergence training, allow larger learning rates
§ Reduce the internal covariate shift

• BatchNorm layers are inserted immediately after convolutional layers or fully-
connected layers, and before activation layers
§ They are very common with convolutional NNs

Regularization



Hyper-parameter Tuning

• Training NNs can involve setting many hyper-parameters
• The most common hyper-parameters include:

§ Number of layers, and number of neurons per layer
§ Initial learning rate
§ Learning rate decay schedule (e.g., decay constant)
§ Optimizer type

• Other hyper-parameters may include:
§ Regularization parameters (ℓ$ penalty, dropout rate)
§ Batch size
§ Activation functions
§ Loss function

• Hyper-parameter tuning can be time-consuming for larger NNs

Hyper-parameter Tuning



Hyper-parameter Tuning

• Grid search
§ Check all values in a range with a step value 

• Random search
§ Randomly sample values for the parameter
§ Often preferred to grid search

• Bayesian hyper-parameter optimization
§ Is an active area of research

Hyper-parameter Tuning



k-Fold Cross-Validation

• Using k-fold cross-validation for hyper-parameter tuning is common when the 
size of the training data is small
§ It also leads to a better and less noisy estimate of the model performance by averaging 

the results across several folds
• E.g., 5-fold cross-validation (see the figure on the next slide)

1. Split the train data into 5 equal folds
2. First use folds 2-5 for training and fold 1 for validation
3. Repeat by using fold 2 for validation, then fold 3, fold 4, and fold 5
4. Average the results over the 5 runs (for reporting purposes)
5. Once the best hyper-parameters are determined, evaluate the model on the test data 

k-Fold Cross-Validation



k-Fold Cross-Validation

• Illustration of a 5-fold cross-validation

k-Fold Cross-Validation

Picture from: https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html
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