
Introduction to
Machine Learning

Dr. Mohamed El Hadi Rahmani
GeCoDe Laboratory

Computer Science department
Faculty of Technology

University of Saida

Lecture Outline

• Machine learning basics
– Supervised and unsupervised learning
– Linear and non-linear classification methods

• Introduction to deep learning
• Elements of neural networks (NNs)

– Activation functions
• Training NNs

– Gradient descent
– Regularization methods

Machine Learning Basics

• Artificial Intelligence is a scientific field concerned with the development of
algorithms that allow computers to learn without being explicitly programmed

• Machine Learning is a branch of Artificial Intelligence, which focuses on
methods that learn from data and make predictions on unseen data

Machine Learning Basics

Labeled Data

Labeled Data

Machine Learning
algorithm

Learned
model Prediction

Training

Prediction

Picture from: Ismini Lourentzou – Introduction to Deep Learning

Machine Learning Types

• Supervised: learning with labeled data
§ Example: email classification, image classification
§ Example: regression for predicting real-valued outputs

• Unsupervised: discover patterns in unlabeled data
§ Example: cluster similar data points

• Reinforcement learning: learn to act based on feedback/reward
§ Example: learn to play Go

Machine Learning Basics

class A

class B

Classification Regression Clustering

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

Supervised Learning

• Supervised learning categories and techniques
§ Numerical classifier functions

o Linear classifier, perceptron, logistic regression, support vector machines (SVM), neural
networks

§ Parametric (probabilistic) functions
o Naïve Bayes, Gaussian discriminant analysis (GDA), hidden Markov models (HMM),

probabilistic graphical models
§ Non-parametric (instance-based) functions

o k-nearest neighbors, kernel regression, kernel density estimation, local regression
§ Symbolic functions

o Decision trees, classification and regression trees (CART)
§ Aggregation (ensemble) learning

o Bagging, boosting (Adaboost), random forest

Machine Learning Basics

Slide credit: Y-Fan Chang – An Overview of Machine Learning

Unsupervised Learning

• Unsupervised learning categories and techniques
§ Clustering

o k-means clustering
o Mean-shift clustering
o Spectral clustering

§ Density estimation
o Gaussian mixture model (GMM)
o Graphical models

§ Dimensionality reduction
o Principal component analysis (PCA)
o Factor analysis

Machine Learning Basics

Slide credit: Y-Fan Chang – An Overview of Machine Learning

Nearest Neighbor Classifier

• Nearest Neighbor – for each test data point, assign the class label of the nearest
training data point
§ Adopt a distance function to find the nearest neighbor

o Calculate the distance to each data point in the training set, and assign the class of the nearest
data point (minimum distance)

§ It does not require learning a set of weights

Machine Learning Basics

Test
exampleTraining

examples
from class 1

Training
examples

from class 2

Picture from: James Hays – Machine Learning Overview

Nearest Neighbor Classifier

• For image classification, the distance between all pixels is calculated (e.g., using
ℓ! norm, or ℓ" norm)
§ Accuracy on CIFAR-10: 38.6%

• Disadvantages:
§ The classifier must remember all training data and store it for future comparisons with

the test data
§ Classifying a test image is expensive since it requires a comparison to all training

images

Machine Learning Basics

Picture from: https://cs231n.github.io/classification/

ℓ! norm
(Manhattan distance)

https://cs231n.github.io/classification/

k-Nearest Neighbors Classifier

• k-Nearest Neighbors approach considers multiple neighboring data points to
classify a test data point
§ E.g., 3-nearest neighbors

o The test example in the figure is the + mark
o The class of the test example is obtained by voting (based on the distance to the 3 closest

points)

Machine Learning Basics

x x

x x

x

x
x

x
o

o
o

o

o

o
o

x2

x1

o
o

x+
+

Picture from: James Hays – Machine Learning Overview

Linear Classifier

• Linear classifier
§ Find a linear function f of the inputs xi that separates the classes

𝑓 𝑥" ,𝑊, 𝑏 = 𝑊𝑥" + 𝑏

§ Use pairs of inputs and labels to find the weights matrix W and the bias vector b
o The weights and biases are the parameters of the function f

§ Several methods have been used to find the optimal set of parameters of a linear
classifier
o A common method of choice is the Perceptron algorithm, where the parameters are updated

until a minimal error is reached (single layer, does not use backpropagation)
§ Linear classifier is a simple approach, but it is a building block of advanced

classification algorithms, such as SVM and neural networks
o Earlier multi-layer neural networks were referred to as multi-layer perceptrons (MLPs)

Machine Learning Basics

Linear Classifier

• The decision boundary is linear
§ A straight line in 2D, a flat plane in 3D, a hyperplane in 3D and

higher dimensional space
• Example: classify an input image

§ The selected parameters in this example are not good, because the
predicted cat score is low

Machine Learning Basics

Picture from: https://cs231n.github.io/classification/

https://cs231n.github.io/classification/

Support Vector Machines

• Support vector machines (SVM)
§ How to find the best decision boundary?

o All lines in the figure correctly separate the 2 classes
o The line that is farthest from all training examples

will have better generalization capabilities
§ SVM solves an optimization problem:

o First, identify a decision boundary that correctly
classifies the examples

Machine Learning Basics

o Next, increase the geometric margin between the
boundary and all examples

§ The data points that define the maximum
margin width are called support vectors

§ Find W and b by solving:

Linear vs Non-linear Techniques

• Linear classification techniques
§ Linear classifier
§ Perceptron
§ Logistic regression
§ Linear SVM
§ Naïve Bayes

• Non-linear classification techniques
§ k-nearest neighbors
§ Non-linear SVM
§ Neural networks
§ Decision trees
§ Random forest

Linear vs Non-linear Techniques

Linear vs Non-linear Techniques

• For some tasks, input data
can be linearly separable,
and linear classifiers can be
suitably applied

• For other tasks, linear
classifiers may have
difficulties to produce
adequate decision
boundaries

Linear vs Non-linear Techniques

Picture from: Y-Fan Chang – An Overview of Machine Learning

Non-linear Techniques

• Non-linear classification
§ Features 𝑧" are obtained as non-linear functions of the inputs 𝑥"
§ It results in non-linear decision boundaries
§ Can deal with non-linearly separable data

Linear vs Non-linear Techniques

Picture from: Y-Fan Chang – An Overview of Machine Learning

Inputs: 𝑥# = 𝑥$! 𝑥$"

Features: 𝑧# = 𝑥$! 𝑥$" 𝑥$! % 𝑥$" 𝑥$!" 𝑥$""

Outputs: 𝑓 𝑥#,𝑊, 𝑏 = 𝑊𝑧# + 𝑏

Non-linear Support Vector Machines

• Non-linear SVM
§ The original input space is mapped to a higher-dimensional feature space where the

training set is linearly separable
§ Define a non-linear kernel function to calculate a non-linear decision boundary in the

original feature space

Linear vs Non-linear Techniques

Φ: 𝑥 ↦ 𝜙 𝑥

Picture from: James Hays – Machine Learning Overview

Binary vs Multi-class Classification

• A classification problem with only 2 classes is referred to as binary classification
§ The output labels are 0 or 1
§ E.g., benign or malignant tumor, spam or no-spam email

• A problem with 3 or more classes is referred to as multi-class classification

Binary vs Multi-class Classification

Binary vs Multi-class Classification

• Both the binary and multi-class classification problems can be linearly or non-
linearly separated
§ Figure: linearly and non-linearly separated data for binary classification problem

Binary vs Multi-class Classification

Computer Vision Tasks

• Computer vision has been the primary area of interest for ML
• The tasks include: classification, localization, object detection, instance

segmentation

Machine Learning Basics

Picture from: Fie-Fei Li, Andrej Karpathy, Justin Johnson – Understanding and Visualizing CNNs

ML vs. Deep Learning

• Conventional machine learning methods rely on human-designed feature
representations
§ ML becomes just optimizing weights to best make a final prediction

Introduction to Deep Learning

Picture from: Ismini Lourentzou – Introduction to Deep Learning

ML vs. Deep Learning

• Deep learning (DL) is a machine learning subfield that uses multiple layers for
learning data representations
§ DL is exceptionally effective at learning patterns

Introduction to Deep Learning

Picture from: https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

ML vs. Deep Learning

• DL applies a multi-layer process for learning rich hierarchical features (i.e., data
representations)
§ Input image pixels → Edges → Textures → Parts → Objects

Introduction to Deep Learning

Low-Level
Features

Mid-Level
Features

OutputHigh-Level
Features

Trainable
Classifier

Slide credit: Param Vir Singh – Deep Learning

Why is DL Useful?

• DL provides a flexible, learnable framework for representing visual, text,
linguistic information
§ Can learn in supervised and unsupervised manner

• DL represents an effective end-to-end learning system
• Requires large amounts of training data
• Since about 2010, DL has outperformed other ML techniques

§ First in vision and speech, then NLP, and other applications

Introduction to Deep Learning

Representational Power

• NNs with at least one hidden layer are universal approximators
§ Given any continuous function h(x) and some 𝜖 > 0, there exists a NN with one

hidden layer (and with a reasonable choice of non-linearity) described with the
function f(x), such that ∀𝑥, ℎ 𝑥 − 𝑓(𝑥) < 𝜖

§ I.e., NN can approximate any arbitrary complex continuous function

Introduction to Deep Learning

• NNs use nonlinear mapping of the inputs x to the
outputs f(x) to compute complex decision boundaries

• But then, why use deeper NNs?
§ The fact that deep NNs work better is an empirical

observation
§ Mathematically, deep NNs have the same

representational power as a one-layer NN

Introduction to Neural Networks

• Handwritten digit recognition (MNIST dataset)
§ The intensity of each pixel is considered an input element
§ Output is the class of the digit

Introduction to Neural Networks

Input

16 x 16 = 256

1x

2x

256x
…

…

Ink → 1
No ink → 0

…
…
y1

y2

y10

Each dimension represents the
confidence of a digit

is 1

is 2

is 0

…
…

0.1

0.7

0.2

The image is “2”

Output

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Introduction to Neural Networks

• Handwritten digit recognition

Introduction to Neural Networks

Machine “2”

1x

2x

256x

…
… …
…

y1

y2

y10𝑓: 𝑅+,- → 𝑅./

The function 𝑓 is represented by a neural network

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Elements of Neural Networks

• NNs consist of hidden layers with neurons (i.e., computational units)
• A single neuron maps a set of inputs into an output number, or 𝑓: 𝑅% → 𝑅

Introduction to Neural Networks

bwawawaz KK ++++= !2211

z

1w

2w

Kw…

1a

2a

Ka

+

b

()zs

bias

a

Activation
functionweights

𝑎 = 𝜎 𝑧

input

output

…
Slide credit: Hung-yi Lee – Deep Learning Tutorial

Elements of Neural Networks

• A NN with one hidden layer and one output layer

Introduction to Neural Networks

𝒉

𝒚

𝒙

𝒉𝒊𝒅𝒅𝒆𝒏 𝒍𝒂𝒚𝒆𝒓 𝒉 = 𝝈(𝐖𝟏𝒙 + 𝒃𝟏)

𝒐𝒖𝒕𝒑𝒖𝒕 𝒍𝒂𝒚𝒆𝒓 𝒚 = 𝝈(𝑾𝟐𝒉 + 𝒃𝟐)

Weights Biases

Activation functions

4 + 2 = 6 neurons (not counting inputs)
[3 × 4] + [4 × 2] = 20 weights

4 + 2 = 6 biases
26 learnable parameters

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

Elements of Neural Networks

• A neural network playground link

Introduction to Neural Networks

http://playground.tensorflow.org/

Elements of Neural Networks

• Deep NNs have many hidden layers
§ Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)
§ Each neuron is connected to all neurons in the succeeding layer

Introduction to Neural Networks

Output Layer
Hidden Layers

Input Layer

Input Output

1x

2x

Layer 1

…
…

Nx

…
…

Layer 2

…
…

Layer L
…

…

……

……

……

…
…

y1

y2

yM

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Elements of Neural Networks

• A simple network, toy example

Introduction to Neural Networks

()zs

z

() ze
z -+
=
1
1s

Sigmoid Function

1

-1

1

-2

1

-1

1

0

4

-2

0.98

0.12

1 % 1 + −1 % −2 + 1 = 4

1 % −1 + −1 % 1 + 0 =-2

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Elements of Neural Networks

• A simple network, toy example (cont’d)
§ For an input vector [1 −1]#, the output is [0.62 0.83]#

Introduction to Neural Networks

1

-2

1

-1

1

0

4

-2

0.98

0.12

2

-1

-1

-2

3

-1

4

-1

0.86

0.11

0.62

0.83

0

0

-2

2

1

-1

𝑓: 𝑅+ → 𝑅+ 𝑓 1
−1 = 0.62

0.83
Slide credit: Hung-yi Lee – Deep Learning Tutorial

Matrix Operation

• Matrix operations are helpful when working with multidimensional inputs and
outputs

Introduction to Neural Networks

1

-2

1

-1

1

0

4

-2

0.98

0.12

1

-1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

𝜎 1
−1

1 −2
−1 1 +

1
0

0.98
0.12=

4
−2

bW x +𝜎 = a

Matrix Operation

• Multilayer NN, matrix calculations for the first layer
§ Input vector x, weights matrix W1, bias vector b1, output vector a1

Introduction to Neural Networks

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

W1

x a1

b1W1 x += 𝜎

b1

a1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Matrix Operation

• Multilayer NN, matrix calculations for all layers

Introduction to Neural Networks

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

W1 W2 WL

b2 bL

x a1 a2 y

b1W1 x +𝜎
b2W2 a1 +𝜎

bLWL +𝜎 aL-1

b1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Matrix Operation

• Multilayer NN, function f maps inputs x to outputs y, i.e., 𝑦 = 𝑓(𝑥)

Introduction to Neural Networks

= 𝜎 𝜎

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

W1 W2 WL

b2 bL

x a1 a2 y

y = 𝑓 x b1W1 x +𝜎 b2W2 + bLWL +…

b1

…

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Softmax Layer

• In multi-class classification tasks, the output layer is typically a softmax layer
§ I.e., it employs a softmax activation function
§ If a layer with a sigmoid activation function is used as the output layer instead, the

predictions by the NN may not be easy to interpret
o Note that an output layer with sigmoid activations can still be used for binary classification

Introduction to Neural Networks

Slide credit: Hung-yi Lee – Deep Learning Tutorial

A Layer with Sigmoid Activations

()11 zy s=

()22 zy s=

()33 zy s=

1z

2z

3z

s

s

s

3

-3

1

0.95

0.05

0.73

Softmax Layer

• The softmax layer applies softmax activations to output
a probability value in the range [0, 1]
§ The values z inputted to the softmax layer are referred to as

logits

Introduction to Neural Networks

1z

2z

3z

A Softmax Layer

e

e

e

1ze

2ze

3ze

+

å
=

=
3

1
1

1

j

zz jeey

å
=

3

1j

z je

÷

÷

÷

3

-3

1 2.7

20

0.05

0.88

0.12

≈0
å
=

=
3

1
2

2

j

zz jeey

å
=

=
3

1
3

3

j

zz jeey

Probability:
§ 0 < 𝑦; < 1
§ ∑; 𝑦; = 1

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Activation Functions

• Non-linear activations are needed to learn complex (non-linear) data
representations
§ Otherwise, NNs would be just a linear function (such as W!W$𝑥 = 𝑊𝑥)
§ NNs with large number of layers (and neurons) can approximate more complex

functions
o Figure: more neurons improve representation (but, may overfit)

Introduction to Neural Networks

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Activation: Sigmoid

• Sigmoid function σ: takes a real-valued number and “squashes” it into the range
between 0 and 1
§ The output can be interpreted as the firing rate of a biological neuron

o Not firing = 0; Fully firing = 1
§ When the neuron’s activation are 0 or 1, sigmoid neurons saturate

o Gradients at these regions are almost zero (almost no signal will flow)
§ Sigmoid activations are less common in modern NNs

Introduction to Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

ℝ$ → 0,1

𝑥

𝑓 𝑥

Activation: Tanh

• Tanh function: takes a real-valued number and “squashes” it into range between
-1 and 1
§ Like sigmoid, tanh neurons saturate
§ Unlike sigmoid, the output is zero-centered

o It is therefore preferred than sigmoid
§ Tanh is a scaled sigmoid: tanh(𝑥) = 2 A 𝜎(2𝑥) − 1

Introduction to Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

ℝ$ → −1,1

𝑥

𝑓 𝑥

Activation: ReLU

• ReLU (Rectified Linear Unit): takes a real-valued number and thresholds it at
zero

𝑓 𝑥 = max(0, 𝑥)

Introduction to Neural Networks

§ Most modern deep NNs use ReLU
activations

§ ReLU is fast to compute
o Compared to sigmoid, tanh
o Simply threshold a matrix at zero

§ Accelerates the convergence of gradient
descent
o Due to linear, non-saturating form

§ Prevents the gradient vanishing problem

ℝ$ → ℝ($

𝑥

𝑓 𝑥

Activation: Leaky ReLU

• The problem of ReLU activations: they can “die”
§ ReLU could cause weights to update in a way that the gradients can become zero and

the neuron will not activate again on any data
§ E.g., when a large learning rate is used

• Leaky ReLU activation function is a variant of ReLU
§ Instead of the function being 0 when 𝑥 < 0, a leaky ReLU has a small negative slope

(e.g., α = 0.01, or similar)

Introduction to Neural Networks

𝑓 𝑥 = C𝛼𝑥 for 𝑥 < 0
𝑥 for 𝑥 ≫ 0

§ This resolves the dying ReLU problem
§ Most current works still use ReLU

o With a proper setting of the learning rate,
the problem of dying ReLU can be avoided

Activation: Linear Function

• Linear function means that the output signal is proportional to the input signal
to the neuron

Introduction to Neural Networks

𝑓 𝑥 = 𝑐𝑥

ℝ$ → ℝ$
§ If the value of the constant c is 1, it is also

called identity activation function
§ This activation type is used in regression

problems
o E.g., the last layer can have linear activation

function, in order to output a real number
(and not a class membership)

Training NNs

• The network parameters 𝜃 include the weight matrices and bias vectors from all
layers

§ Often, the model parameters 𝜃 are referred to as weights
• Training a model to learn a set of parameters 𝜃 that are optimal (according to a

criterion) is one of the greatest challenges in ML

Training Neural Networks

𝜃 = 𝑊J, 𝑏J,𝑊K, 𝑏K, ⋯𝑊L, 𝑏L

16 x 16 = 256

1x

2x
…

…

256x
…

…

……

……

……

…
…

y1

y2

y10

0.1

0.7

0.2

is 1

is 2

is 0

Softm
ax

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Training NNs

• Data preprocessing - helps convergence during training
§ Mean subtraction, to obtain zero-centered data

o Subtract the mean for each individual data dimension (feature)
§ Normalization

o Divide each feature by its standard deviation
– To obtain standard deviation of 1 for each data dimension (feature)

o Or, scale the data within the range [0,1] or [-1, 1]
– E.g., image pixel intensities are divided by 255 to be scaled in the [0,1] range

Training Neural Networks

Picture from: https://cs231n.github.io/neural-networks-2/

https://cs231n.github.io/neural-networks-2/

Training NNs

• To train a NN, set the parameters 𝜃 such that for a training subset of images, the
corresponding elements in the predicted output have maximum values

Training Neural Networks

y1 has the maximum valueInput:

y2 has the maximum valueInput:
.
.
.

Input: y9 has the maximum value

Input: y10 has the maximum value

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Training NNs

• Define a loss function/objective function/cost function ℒ 𝜃 that calculates the
difference (error) between the model prediction and the true label
§ E.g., ℒ 𝜃 can be mean-squared error, cross-entropy, etc.

Training Neural Networks

1x

2x

…
…

256x

…
…

……

……

……

…
…

y1

y2

y10

Cost

0.2

0.3

0.5

…
…

1

0

0

…
…

True label “1”

ℒ(𝜃)

…
…

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Training NNs

• For a training set of 𝑁 images, calculate the total loss overall all images: ℒ 𝜃 =
∑$)!* ℒ$ 𝜃

• Find the optimal parameters 𝜃∗ that minimize the total loss ℒ 𝜃

Training Neural Networks

x1

x2

xN

NN

NN

NN

…
…

…
…

y1

y2

yN

9𝑦J

9𝑦K

9𝑦N

ℒJ 𝜃

…
…

…
…

x3 NN y39𝑦O

ℒK 𝜃

ℒO 𝜃

ℒP 𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Loss Functions

• Classification tasks

Training Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

Training
examples

Output
Layer

Softmax Activations
[maps to a probability distribution]

Loss function Cross-entropy ℒ 𝜃 = −
1
𝑁'
!"#

$

'
%"#

&

𝑦%
(!) log ,𝑦%

(!) + 1 − 𝑦%
(!) log 1 − ,𝑦%

!

Pairs of 𝑁 inputs 𝑥! and ground-truth class labels 𝑦!

Ground-truth class labels 𝑦" and model predicted class labels R𝑦"

Loss Functions

• Regression tasks

Training Neural Networks

Slide credit: Ismini Lourentzou – Introduction to Deep Learning

Training
examples

Output
Layer

Loss function
Mean Squared Error ℒ 𝜃 =

1
𝑛
W
#)!

$

𝑦(#) − X𝑦(#) "

Linear (Identity) or Sigmoid Activation

Mean Absolute Error ℒ 𝜃 =
1
𝑛
W
#)!

$

𝑦(#) − X𝑦(#)

Pairs of 𝑁 inputs 𝑥! and ground-truth output values 𝑦!

Training NNs

• Optimizing the loss function ℒ 𝜃
§ Almost all DL models these days are trained with a variant of the gradient descent

(GD) algorithm
§ GD applies iterative refinement of the network parameters 𝜃
§ GD uses the opposite direction of the gradient of the loss with respect to the NN

parameters (i.e.,𝛻ℒ 𝜃 = ⁄𝜕ℒ 𝜕𝜃") for updating 𝜃
o The gradient of the loss function 𝛻ℒ 𝜃 gives the direction of fastest increase of the loss

function ℒ 𝜃 when the parameters 𝜃 are changed

Training Neural Networks

ℒ 𝜃

𝜃#

𝜕ℒ
𝜕𝜃"

Gradient Descent Algorithm

• Steps in the gradient descent algorithm:
1. Randomly initialize the model parameters, 𝜃%

2. Compute the gradient of the loss function at the initial parameters 𝜃%: 𝛻ℒ 𝜃%

3. Update the parameters as: 𝜃&'(= 𝜃% − 𝛼𝛻ℒ 𝜃%

o Where α is the learning rate
4. Go to step 2 and repeat (until a terminating criterion is reached)

Training Neural Networks

Loss ℒ

Parameters 𝜃

Global loss minimum ℒ)"&

Gradient 𝛻ℒ = .ℒ
.V

Initial
parameters 𝜃0

Parameter update: 𝜃&'(= 𝜃 − 𝛼𝛻ℒ 𝜃%

Gradient Descent Algorithm

• Example: a NN with only 2 parameters 𝑤! and 𝑤", i.e., 𝜃 = 𝑤!, 𝑤"
§ The different colors represent the values of the loss (minimum loss 𝜃∗ is ≈ 1.3)

Training Neural Networks

𝑤J

𝑤K

2. Compute the
gradient at 𝜃0, 𝛻ℒ 𝜃0

𝜃W

3. Times the learning
rate 𝜂, and update 𝜃,
𝜃$12 = 𝜃0 − 𝛼𝛻ℒ 𝜃0

𝜃J

1. Randomly pick a
starting point 𝜃0

4. Go to step 2, repeat
−𝛻ℒ 𝜃W

𝜃J =
𝜃W − 𝛼𝛻ℒ 𝜃W

𝜃∗

𝛻ℒ 𝜃0 = 𝜕ℒ 𝜃0 /𝜕𝑤!
𝜕ℒ 𝜃0 /𝜕𝑤"

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Gradient Descent Algorithm

• Example (contd.)

Training Neural Networks

𝑤J

𝑤K

𝜃W

𝜃J
𝜃J − 𝛼𝛻ℒ 𝜃J 𝜃K − 𝛼𝛻ℒ 𝜃K

𝜃K

Eventually, we would reach a minimum …..

Slide credit: Hung-yi Lee – Deep Learning Tutorial

2. Compute the gradient
at 𝜃345, 𝛻ℒ 𝜃345

3. Times the learning rate 𝜂,
and update 𝜃,
𝜃$12 = 𝜃345 − 𝛼𝛻ℒ 𝜃345

4. Go to step 2, repeat

Gradient Descent Algorithm

• Gradient descent algorithm stops when a local minimum of the loss surface is
reached
§ GD does not guarantee reaching a global minimum
§ However, empirical evidence suggests that GD works well for NNs

Training Neural Networks

ℒ 𝜃

𝜃

Picture from: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

Gradient Descent Algorithm

• For most tasks, the loss surface ℒ 𝜃 is highly complex (and non-convex)

Training Neural Networks

ℒ

𝑤. 𝑤+

Slide credit: Hung-yi Lee – Deep Learning Tutorial

• Random initialization in NNs results
in different initial parameters 𝜃0
every time the NN is trained
§ Gradient descent may reach different

minima at every run
§ Therefore, NN will produce different

predicted outputs
• In addition, currently we don’t have

algorithms that guarantee reaching a
global minimum for an arbitrary loss
function

Backpropagation

• Modern NNs employ the backpropagation method for calculating the gradients
of the loss function 𝛻ℒ 𝜃 = ⁄𝜕ℒ 𝜕𝜃#
§ Backpropagation is short for “backward propagation”

• For training NNs, forward propagation (forward pass) refers to passing the
inputs 𝑥 through the hidden layers to obtain the model outputs (predictions) 𝑦
§ The loss ℒ 𝑦, R𝑦 function is then calculated
§ Backpropagation traverses the network in reverse order, from the outputs 𝑦 backward

toward the inputs 𝑥 to calculate the gradients of the loss 𝛻ℒ 𝜃
§ The chain rule is used for calculating the partial derivatives of the loss function with

respect to the parameters 𝜃 in the different layers in the network
• Each update of the model parameters 𝜃 during training takes one forward and

one backward pass (e.g., of a batch of inputs)
• Automatic calculation of the gradients (automatic differentiation) is available in

all current deep learning libraries
§ It significantly simplifies the implementation of deep learning algorithms, since it

obviates deriving the partial derivatives of the loss function by hand

Training Neural Networks

Mini-batch Gradient Descent

• It is wasteful to compute the loss over the entire training dataset to perform a
single parameter update for large datasets
§ E.g., ImageNet has 14M images
§ Therefore, GD (a.k.a. vanilla GD) is almost always replaced with mini-batch GD

• Mini-batch gradient descent
§ Approach:

o Compute the loss ℒ 𝜃 on a mini-batch of images, update the parameters 𝜃, and repeat until
all images are used

o At the next epoch, shuffle the training data, and repeat the above process
§ Mini-batch GD results in much faster training
§ Typical mini-batch size: 32 to 256 images
§ It works because the gradient from a mini-batch is a good approximation of the

gradient from the entire training set

Training Neural Networks

Stochastic Gradient Descent

• Stochastic gradient descent
§ SGD uses mini-batches that consist of a single input example

o E.g., one image mini-batch
§ Although this method is very fast, it may cause significant fluctuations in the loss

function
o Therefore, it is less commonly used, and mini-batch GD is preferred

§ In most DL libraries, SGD typically means a mini-batch GD (with an option to add
momentum)

Training Neural Networks

Problems with Gradient Descent

• Besides the local minima problem, the GD algorithm can be very slow at
plateaus, and it can get stuck at saddle points

Training Neural Networks

cost ℒ 𝜃

Very slow at the plateau

Stuck at a local minimum

𝛻ℒ 𝜃 = 0

Stuck at a saddle point

𝛻ℒ 𝜃 = 0𝛻ℒ 𝜃 ≈ 0

𝜃
Slide credit: Hung-yi Lee – Deep Learning Tutorial

Gradient Descent with Momentum

• Gradient descent with momentum uses the momentum of the gradient for
parameter optimization

Training Neural Networks

Movement = Negative of Gradient + Momentum

Gradient = 0

Negative of Gradient
Momentum
Real Movement

cost ℒ 𝜃

𝜃

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Gradient Descent with Momentum

• Parameters update in GD with momentum at iteration 𝑡: 𝜃6 = 𝜃67! − 𝑉6
o Where: 𝑉)= 𝛽𝑉)*# + 𝛼𝛻ℒ 𝜃)*#

o I.e., 𝜃) = 𝜃)*# − 𝛼𝛻ℒ 𝜃)*# − 𝛽𝑉)*#

• Compare to vanilla GD: 𝜃6 = 𝜃67! − 𝛼𝛻ℒ 𝜃67!

§ Where 𝜃+,! are the parameters from the previous iteration 𝑡 − 1
• The term 𝑉6 is called momentum

§ This term accumulates the gradients from the past several steps, i.e.,
𝑉)= 𝛽𝑉)*# + 𝛼𝛻ℒ 𝜃)*#

= 𝛽 𝛽𝑉)*+ + 𝛼𝛻ℒ 𝜃)*+ + 𝛼𝛻ℒ 𝜃)*#
= 𝛽+𝑉)*+ + 𝛽𝛼𝛻ℒ 𝜃)*+ + 𝛼𝛻ℒ 𝜃)*#

= 𝛽,𝑉)*, + 𝛽+𝛼𝛻ℒ 𝜃)*, + 𝛽𝛼𝛻ℒ 𝜃)*+ + 𝛼𝛻ℒ 𝜃)*#

§ This term is analogous to a momentum of a heavy ball rolling down the hill
• The parameter 𝛽 is referred to as a coefficient of momentum

§ A typical value of the parameter 𝛽 is 0.9
• This method updates the parameters 𝜃 in the direction of the weighted average

of the past gradients

Training Neural Networks

Nesterov Accelerated Momentum

• Gradient descent with Nesterov accelerated momentum
§ Parameter update: 𝜃+ = 𝜃+,! − 𝑉+

o Where: 𝑉)= 𝛽𝑉)*# + 𝛼𝛻ℒ 𝜃)*# + 𝛽𝑉)*#

§ The term 𝜃+,! + 𝛽𝑉+,! allows to predict the position of the parameters in the next step
(i.e., 𝜃+ ≈ 𝜃+,! + 𝛽𝑉+,!)

§ The gradient is calculated with respect to the approximate future position of the
parameters in the next iteration, 𝜃+, calculated at iteration 𝑡 − 1

Training Neural Networks

Picture from: https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12

GD with momentum GD with Nesterov
momentum

https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12

Adam

• Adaptive Moment Estimation (Adam)
§ Adam combines insights from the momentum optimizers that accumulate the values

of past gradients, and it also introduces new terms based on the second moment of the
gradient
o Similar to GD with momentum, Adam computes a weighted average of past gradients (first

moment of the gradient), i.e., 𝑉)= 𝛽#𝑉)*# + 1 − 𝛽# 𝛻ℒ 𝜃)*#

o Adam also computes a weighted average of past squared gradients (second moment of the
gradient), , i.e., 𝑈)= 𝛽+𝑈)*# + 1 − 𝛽+ 𝛻ℒ 𝜃)*#

+

§ The parameter update is:𝜃+ = 𝜃+,! − 𝛼
-.!

-/!01

o Where: 4𝑉) = -!

#*."
and 5𝑈) = /!

#*.#
o The proposed default values are 𝛽# = 0.9, 𝛽+ = 0.999, and 𝜖 = 10*0

• Other commonly used optimization methods include:
§ Adagrad, Adadelta, RMSprop, Nadam, etc.
§ Most commonly used optimizers nowadays are Adam and SGD with momentum

Training Neural Networks

Learning Rate

• Learning rate
§ The gradient tells us the direction in which the loss has the steepest rate of increase,

but it does not tell us how far along the opposite direction we should step
§ Choosing the learning rate (also called the step size) is one of the most important

hyper-parameter settings for NN training

Training Neural Networks

LR too
small

LR too
large

Learning Rate

• Training loss for different learning rates
§ High learning rate: the loss increases or plateaus too quickly
§ Low learning rate: the loss decreases too slowly (takes many epochs to reach a

solution)

Training Neural Networks

Picture from: https://cs231n.github.io/neural-networks-3/

https://cs231n.github.io/neural-networks-3/

Learning Rate Scheduling

• Learning rate scheduling is applied to change the values of the learning rate
during the training
§ Annealing is reducing the learning rate over time (a.k.a. learning rate decay)

o Approach 1: reduce the learning rate by some factor every few epochs
– Typical values: reduce the learning rate by a half every 5 epochs, or divide by 10 every 20 epochs

o Approach 2: exponential or cosine decay gradually reduce the learning rate over time
o Approach 3: reduce the learning rate by a constant (e.g., by half) whenever the validation loss

stops improving
– In TensorFlow: tf.keras.callbacks.ReduceLROnPleateau()
» Monitor: validation loss, factor: 0.1 (i.e., divide by 10), patience: 10 (how many epochs to wait before applying it),

Minimum learning rate: 1e-6 (when to stop)

§ Warmup is gradually increasing the learning rate initially, and afterward let it cool
down until the end of the training

Training Neural Networks

Exponential decay Cosine decay Warmup

Vanishing Gradient Problem

• In some cases, during training, the gradients can become either very small
(vanishing gradients) of very large (exploding gradients)
§ They result in very small or very large update of the parameters
§ Solutions: change learning rate, ReLU activations, regularization, LSTM units in RNNs

Training Neural Networks

1x

2x

…
…

Nx

…
…

…
…

…
…

……

……

……

…
…

y1

y2

yM

Small gradients, learns very slow

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Generalization

• Underfitting
§ The model is too “simple” to represent

all the relevant class characteristics
§ E.g., model with too few parameters
§ Produces high error on the training set

and high error on the validation set

• Overfitting
§ The model is too “complex” and fits

irrelevant characteristics (noise) in the
data

§ E.g., model with too many parameters
§ Produces low error on the training error

and high error on the validation set

Generalization

Overfitting

• Overfitting – a model with high capacity fits the noise in the data instead of the
underlying relationship

Generalization

Picture from: http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

• The model may fit the training data
very well, but fails to generalize to new
examples (test or validation data)

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Regularization: Weight Decay

• ℓ𝟐 weight decay
§ A regularization term that penalizes large weights is added to the loss function

ℒ]^_ 𝜃 = ℒ 𝜃 + 𝜆A
`

𝜃`K

§ For every weight in the network, we add the regularization term to the loss value
o During gradient descent parameter update, every weight is decayed linearly toward zero

§ The weight decay coefficient 𝜆 determines how dominant the regularization is during
the gradient computation

Regularization

Data loss Regularization loss

Regularization: Weight Decay

• Effect of the decay coefficient 𝜆
§ Large weight decay coefficient → penalty for weights with large values

Regularization

Regularization: Weight Decay

• ℓ𝟏 weight decay
§ The regularization term is based on the ℓ! norm of the weights

ℒ]^_ 𝜃 = ℒ 𝜃 + 𝜆∑` 𝜃`
§ ℓ! weight decay is less common with NN

o Often performs worse than ℓ+ weight decay
§ It is also possible to combine ℓ! and ℓ$ regularization

o Called elastic net regularization

ℒ819 𝜃 = ℒ 𝜃 + 𝜆!∑: 𝜃: + 𝜆"∑: 𝜃:"

Regularization

Regularization: Dropout

• Dropout
§ Randomly drop units (along with their connections) during training
§ Each unit is retained with a fixed dropout rate p, independent of other units
§ The hyper-parameter p needs to be chosen (tuned)

o Often, between 20% and 50% of the units are dropped

Regularization

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Regularization: Dropout

• Dropout is a kind of ensemble learning
§ Using one mini-batch to train one network with a slightly different

architecture

Regularization

minibatch
1

minibatch
2

minibatch
3

minibatch
n

…
…

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Regularization: Early Stopping

• Early-stopping
§ During model training, use a validation set

o E.g., validation/train ratio of about 25% to 75%
§ Stop when the validation accuracy (or loss) has not improved after n epochs

o The parameter n is called patience

Regularization

Stop training

validation

Batch Normalization

• Batch normalization layers act similar to the data preprocessing steps
mentioned earlier
§ They calculate the mean µ and variance σ of a batch of input data, and normalize the

data x to a zero mean and unit variance
§ I.e., R𝑥 = 2,3

4

• BatchNorm layers alleviate the problems of proper initialization of the
parameters and hyper-parameters
§ Result in faster convergence training, allow larger learning rates
§ Reduce the internal covariate shift

• BatchNorm layers are inserted immediately after convolutional layers or fully-
connected layers, and before activation layers
§ They are very common with convolutional NNs

Regularization

Hyper-parameter Tuning

• Training NNs can involve setting many hyper-parameters
• The most common hyper-parameters include:

§ Number of layers, and number of neurons per layer
§ Initial learning rate
§ Learning rate decay schedule (e.g., decay constant)
§ Optimizer type

• Other hyper-parameters may include:
§ Regularization parameters (ℓ$ penalty, dropout rate)
§ Batch size
§ Activation functions
§ Loss function

• Hyper-parameter tuning can be time-consuming for larger NNs

Hyper-parameter Tuning

Hyper-parameter Tuning

• Grid search
§ Check all values in a range with a step value

• Random search
§ Randomly sample values for the parameter
§ Often preferred to grid search

• Bayesian hyper-parameter optimization
§ Is an active area of research

Hyper-parameter Tuning

k-Fold Cross-Validation

• Using k-fold cross-validation for hyper-parameter tuning is common when the
size of the training data is small
§ It also leads to a better and less noisy estimate of the model performance by averaging

the results across several folds
• E.g., 5-fold cross-validation (see the figure on the next slide)

1. Split the train data into 5 equal folds
2. First use folds 2-5 for training and fold 1 for validation
3. Repeat by using fold 2 for validation, then fold 3, fold 4, and fold 5
4. Average the results over the 5 runs (for reporting purposes)
5. Once the best hyper-parameters are determined, evaluate the model on the test data

k-Fold Cross-Validation

k-Fold Cross-Validation

• Illustration of a 5-fold cross-validation

k-Fold Cross-Validation

Picture from: https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/cross_validation.html

About Lecturer

Dr. Mohamed EL Hadi Rahmani:

PhD at GeCoDe Laboratory, Computer Science department,

Faculty of Technology, University of Saida

• Blog: https://argelhadi.wordpress.com/

• Twitter: @elhadi213

• LinkedIn: Rahmani Mohamed Elhadi

• Email: elhadi213@outlook.com / r_m_elhadi@yahoo.fr

https://argelhadi.wordpress.com/
https://twitter.com/elhadi213
https://www.linkedin.com/pub/rahmani-mohamed-elhadi/25/779/260
mailto:elhadi213@outlook.com
mailto:r_m_elhadi@yahoo.fr

