
Principles of Computer Science II
Working with Data Sets

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 12

Analysis of Data
▶ Viewing and analyzing vast amounts of biological data in its

unstructured entirety can be perplexing.
▶ It is easier to interpret data if it is organized into clusters that

combine similar (i.e., related) data points.

Analyzing data from DNA microarray experiments (expression
analysis – i.e., determining which genes are switched “on” or “off”
under certain conditions of interest).

Building and understanding phylogenetic (evolutionary) trees based
on genomic or other data.

Microarray Analysis
▶ What do newly sequenced genes do?
▶ Simply comparing new gene sequences to known DNA

sequences often does not reveal the function of a new gene.
▶ For 40% of sequenced genes, functionality cannot be

ascertained by comparing to sequences of other known genes.
▶ It is easier to interpret data if it is organized into clusters that

combine similar (i.e., related) data points.

Microarrays and expression analysis

▶ Microarrays measure activity (expression level) of genes under
varying conditions and/or points in time.

▶ Expression level is estimated by measuring amount of mRNA
for that particular gene:
▶ A gene is active if it is being transcribed.
▶ More mRNA usually indicates more gene activity.

A Microarray Experiment
▶ Produce cDNA from mRNA (cDNA is more stable)
▶ Label cDNA with a fluorescent dye or biotin for detection
▶ Different color labels are available to compare many samples

at once
▶ Wash cDNA over the microarray containing thousands of high

density probes that hybridize to complementary strands in the
sample and immobilize them on the surface.

▶ For biotin-labeled samples, stain with the biotin-specific
fluorescently labeled antibody

▶ Read the microarray, using a laser or a high-resolution CCD
▶ Illumination reveals transcribed/co-expressed genes

A Microarray Experiment

▶ Green: expressed only in control

▶ Red: expressed only in an
experimental cell

▶ Yellow: equally expressed in both
samples

▶ Black: NOT expressed in
either control or sample

A Microarray Experiment

▶ Boxes: Gene’s
expression over
time

▶ Track sample over
period of time:
see how gene
expression
changes.

▶ Track two
different samples
under same
conditions: see
differences in gene
expression.

Microarray Data Transformation
▶ Microarray data are usually transformed into a (relative,

normalized) intensity matrix
▶ Can also be represented as a bit matrix (log2 of relative

intensity)
▶ The intensity matrix allows biologists to infer correlations

between different genes (even if they are dissimilar) and to
understand how genes functions might be related

▶ Care must be taken to normalize the data appropriately, e.g.
different time points can come from different arrays.

Microarray Data Intensity Matrix

▶ Which genes are
similar?

▶ What defines
co-expression?

▶ How to measure the
distance/similarity?

Euclidean Distance in D-dimensions

D(x , y) =

√√√√
d∑

i=1

(xi − yi)
2

Finding Similar Genes The Clustering Problem
▶ Motivation: Find patterns in a sea of data
▶ Input

▶ A (large) number of datapoints: N
▶ A measure of distance between any two data points dij

▶ Output
▶ Groupings (clustering) of the elements into K (the number can

be user-specified or automatically determined) ‘similarity’
classes

▶ Sometimes there is also an objective measure that the
obtained clustering seeks to minimize.

Clustering Principles
▶ Homogeneity – elements of the same cluster are maximally

close to each other.
▶ Separation – elements in separate clusters are maximally far

apart from each other.
▶ One is actually implied by the other (in many cases).
▶ Generally it is a hard problem.

▶ Clustering in 2 dimensions looks easy
▶ Clustering small amounts of data looks easy
▶ High-dimensional spaces look different – Almost all pairs of

points are at about the same distance

Some Examples

▶ Both principles are violated

▶ Points in the same cluster
are far apart

▶ Points in different cluster
are close

▶ More reasonable assignment.

▶ We need to use an objective
function to optimize cluster
assignment.

Intra/Inter Cluster Distances

▶ Suitably select distance metric.
▶ Maximize Inter-cluster distances.
▶ Minimize Intra-cluster distances.

Distance Measures
▶ Each clustering problem is based on some kind of “distance”

between points.
▶ Two major classes of distance measure:

1. Euclidean
2. Non-Euclidean

▶ A Euclideanspace has some number of real-valued dimensions.
▶ There is a notion of “average” of two points.
▶ A Euclidean distance is based on the locations of points in

such a space.
▶ A Non-Euclidean distance is based on properties of points, but

not their “location” in a space.

Axioms of a Distance Measure

d is a distance measure if it is a function from pairs of points to
real numbers such that:

1. d(x , y) > 0

2. d(x , y) = 0 iff x = y

3. d(x , y) = d(y , x)

4. d(x , y) < d(x , z) + d(z , y) (triangle inequality)

Some Euclidean Distances

L2 norm: d(x , y) = square root of the sum of the squares of the
differences between x and y in each dimension.
The most common notion of “distance”.

L1 norm: sum of the differences in each dimension.
Manhattan distance = distance if you had to travel along
coordinates only.

Some Non-Euclidean Distances

Jaccard distance for sets = 1 minus ratio of sizes of intersection
and union.

Cosine distance = angle between vectors from the origin to the
points in question.

Edit distance = number of inserts and deletes to change one string
into another.

Jaccard Distance for Sets

Example: p1 = 10111; p2 = 10011.
Size of intersection = 3; size of union = 4, Jaccard similarity (not
distance) = 3

4 .
d(x , y) = 1–(Jaccard similarity) = 1

4 .

Why JD is a distance measure?

1. d(x , x) = 0 because x ∩ x = x ∪ x
2. d(x , y) = d(y , x) because union and intersection are

symmetric
3. d(x , y) ≥ 0 because |x ∩ y | ≤ |x ∪ y |
4. d(x , y) < d(x , z) + d(z , y) more difficult...(

1− |x∩z|
|x∪z|

)
+

(
1− |y∩z|

|y∪z|

)
≥ 1− |x∩y |

|x∪y |

Edit Distance

The edit distance of two strings is the number of inserts and deletes
of characters needed to turn one into the other. Equivalently:

d(x , y) = |x |+ |y | − 2|LCS(x , y)|

LCS = longest common subsequence = any longest string obtained
both by deleting from x and deleting from y.

Example
▶ x = abcde ; y = bcduve.
▶ Turn x into y by deleting a, then inserting u and v after d.

Edit distance = 3.
▶ Or, LCS(x,y) = bcde.
▶ Note: |x |+ |y | − 2|LCS(x , y)| = 5+ 6− 2× 4 = 3 = edit dist

Why Edit Distance is a Distance Measure?

1. d(x , x) = 0 because 0 edits suffice.

2. d(x , y) = d(y , x) because insert/delete are inverses of each
other

3. d(x , y) ≥ 0 no notion of negative edits

4. d(x , y) < d(x , z) + d(z , y) Triangle inequality:
changing x to z and then to y is one way to change x to y.

Hierarchical Clustering
▶ Produces a set of nested clusters organized as a hierarchical

tree
▶ Can be visualized as a dendrogram – A tree like diagram that

records the sequences of merges or splits

Agglomerative Hierarchical Clustering
▶ Initially, each point is a cluster
▶ Repeatedly combine the two “nearest” clusters into one

Compute the proximity matrix

Let each data point be a cluster

Repeat

Merge the two closest clusters

Update the proximity matrix

Until only a single cluster remains

▶ Key operation is the computation of the proximity of two
clusters

▶ Different approaches to defining the distance between clusters
distinguish the different algorithms

How to define Inter-cluster similarity?

▶ Minimum – based on the two most similar (closest) points in
the different clusters

▶ Maximum – based on the two least similar (most distant)
points in the different clusters

▶ Group Average

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Example

Minimum – based on the two most similar (closest) points in the
different clusters

Minimum – Strength

Minimum – Limitations Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in
the different clusters

Maximum – Strength

Maximum – Limitations K-means Algorithm
▶ Developed and published in Applied Statistics by Hartigan and

Wong, 1979.
▶ Many variations have been proposed since then.
▶ Standard/core function of R, Python, Matlab, . . .
▶ Assumes Euclidean space/distance

The aim of the K-means algorithm is to divide M points in N
dimensions into k clusters so that the within-cluster sum of squares
is minimized.

min.C1,...,CK

k∑

k=1

1

|Ck |
∑

i ,i ′∈Ck

p∑

j=1

(xij − xi ′ j)
2

Cluster Initialization

▶ Start by picking k, the number of clusters

▶ Initialize clusters by picking one point per cluster

Example: Pick one point at random, then k − 1 other points, each
as far away as possible from the previous points

Populating Clusters
1. For each point, place it in the cluster whose current centroid

it is nearest
2. After all points are assigned, update the locations of centroids

of the k clusters
3. Reassign all points to their closest centroid

▶ Sometimes moves points between clusters

4. Repeat 2 and 3 until convergence

Convergence: Points do not move between clusters and centroids
stabilize

A Simple Example A Simple Example

A Simple Example A Simple Example

A Simple Example A Simple Example

A Simple Example A Simple Example

A Simple Example A Simple Example

A Simple Example How to select k?
▶ We use the elbow method to determine the optimum number

of clusters.
▶ Try different k , looking at the change in the average distance

to centroid as k increases.
▶ Average falls rapidly until right k , then changes little.

Selection of k – an example Selection of k – an example

Selection of k – an example Loading the Iris dataset

import pandas as pd

data = pd.read_csv('iris.csv',

names=['slength', 'swidth',

'plength', 'pwidth', 'name'])

One-dimensional clustering

values = data[['slength']]

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=3, init='random')

kmeans.fit(values)

centroids = model.cluster_centers_

c = kmeans.predict(values)

Two-dimensional clustering

kmeans = KMeans(n_clusters=3, init='random')

values = data[['slength', 'swidth']]

kmeans.fit(values)

labels = kmeans.predict(values)

values["clusters"] = labels

import matplotlib.pyplot as plt

for k in range(0,3):

plt.scatter(values[values.clusters==k][['slength']],

values[values.clusters==k][['swidth']])

plt.show()

Examining the number of clusters

sd = {}

for k in range(1,20):

modelk = KMeans(n_clusters=k)

modelk.fit(values)

sd[k] = modelk.inertia_

plt.figure()

plt.plot(list(sd.keys()), list(sd.values()))

plt.xlabel("Number of clusters")

plt.ylabel("Cost function")

plt.show()

