
Principles of Computer Science II
Cloud Computing

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 2

AWS: Elastic Compute Cloud (EC2)
▶ AWS EC2 = Elastic Compute Cloud
▶ Resizable compute resources in the cloud.
▶ Minimizes the time to provision a server.

▶ Introduce a new server within minimum delay.
▶ Scale capacity up very fast.

▶ Quickly modify the capabilities of the compute instance.
▶ Introduce additional computational, memory and storage

capabilities.
▶ Reduce computational, memory and storage capabilities.

▶ Shutdown - or completely remove resources.
▶ Scale down very fast.

▶ Pay only for the resources you need.

Typical Use Cases
▶ Development and Testing Environments
▶ Hosting of Databases
▶ Hosting of web services
▶ Data analytics
▶ Code repository
▶ GPU-assisted machine learning
▶ High performance computing
▶ Video processing
▶ Backup and disaster recovery
▶ . . .

EC2 Provisioning Options
▶ On Demand – Pay for the compute capacity by the hour.

▶ No up-front payment or long-term commitment.
▶ Short-term, spiky, or unpredictable workloads.
▶ Applications development or testing.

▶ Spot Instances – Acquire spare capacity up to 90% off the
on-demand price.
▶ When start/end times are flexible.
▶ Applications that are only feasible at very low compute prices.
▶ Urgent computing needs for large amounts of additional

capacity.
▶ Reserved Instances – Significant discount (up to 75%)

compared to On-Demand instance pricing.
▶ For applications that have steady state or predictable usage.
▶ Long term (≥ 1 year) to reduce their total computing costs.

▶ Dedicated Hosts – Physical servers dedicated for use use.

EC2 Instance Types
▶ General Purpose – balance of compute, memory and

networking resources.
▶ Compute Optimized – ideal for compute bound applications

that benefit from high performance processors.
▶ Memory Optimized – deliver fast performance for workloads

that process large data sets in memory.
▶ Accelerated computing – use hardware accelerators, or

co-processors, to perform functions, such as floating point
number calculations, graphics processing, or data pattern
matching, more efficiently than is possible in software running
on generic CPUs.

▶ Storage optimized – for workloads that require high, sequential
read and write access to very large data sets on local storage.

EC2 Instance Types & Resources
▶ CPU – 64-bit Arm, AMD EPYC 7000, Intel Xeon Platinum

8175M, Intel Xeon E5-2676.
▶ 1 . . . 192 virtual CPUs – 1 thread = 1 vCPU.

▶ Memory – 1 . . . 512 GB.
▶ Network – up to 100 Gbps.
▶ Storage

▶ Amazon Elastic Block Store (EBS) – easy to use, high
performance block storage service.

▶ 0 . . . 60 TB NVMe SSD – ensure best IOPS (Input/Output
operations per second).

▶ Hardware Accelerators
▶ NVIDIA Tesla V100 GPUs, NVIDIA K80 GPUs, NVIDIA T4

Tensor Core GPUs.
▶ AWS Inferentia Chips.
▶ Xilinx Virtex UltraScale+ VU9P FPGAs

Available OS & Software
▶ Operating Systems

▶ Linux/Unix – Amazon Linux, Debian, Ubuntu, Red Hat,
CentOS, SUSE, FreeBSD, Gentoo, Mint, . . .

▶ Windows – Server 2019, Server 2016, Server 2012.
▶ Databases – PostgreSQL, MySQL, MongoDB, Neo4J, Oracle

Enterprise, Microsoft SQL, . . .
▶ AWS Marketplace – a wide selection of commercial and free

software from well-known vendors.

Pricing Examples
▶ General Purpose

▶ t2.micro Linux or Windows – 2 vCPUs + 4 GB – 750 hours
free per month, $0.05/h

▶ a1.xlarge Linux – 4 64-bit ARM vCPUs + 8 GB – $0.1152/h
▶ a1.xlarge Linux – 4 64-bit ARM vCPUs + 8 GB – $0.1152/h
▶ m5.24xlarge Linux – 96 Xeon vCPUs + 337 GB – $5.136/h
▶ m5.24xlarge Windows – 96 Xeon vCPUs + 337 GB – $9.552/h

▶ Compute Optimized
▶ c5.xlarge Linux – 4 Xeon vCPUs + 8 GB – $0.192/Hour
▶ c5.24xlarge Linux – 96 Xeon vCPUs + 192 GB – $4.608/Hour

▶ Hardware Accelerators
▶ p3.2xlarge Linux – 1 NVIDIA Tesla V100 GPUs + 8 Xeon

vCPUs + 61 GB – $3.305 per Hour
▶ p3dn.24xlarge Linux – 8 NVIDIA Tesla V100 GPUs + 96 Xeon

vCPUs + 768 GB – $33.711 per Hour

Amazon Elastic Block Store (EBS)
▶ Easy to use, high performance block storage service.
▶ Targeting both throughput and transaction intensive

workloads.
▶ Can be used for relational and non-relational databases.
▶ Enterprise applications.
▶ Big data analytics engines.
▶ General purpose file systems.
▶ Media workflows.

▶ Highly availability and durability – 99.999%
▶ Virtually unlimited scale – as little as a single GB of storage,

or scale up to petabytes of data.
▶ Secure – encryption of data at-rest, data in-transit, and all

volume backups.

EBS Volume Types – HDD based
▶ Throughput Optimized HDD (ST1) – ideal for frequently

accessed, throughput-intensive workloads.
▶ Large datasets and large I/O sizes, such as MapReduce, Kafka,

log processing, data warehouse, and ETL workloads.
▶ Low cost HDD volume.
▶ Volume Size: 500 GB – 16 TB.
▶ Max IOPS/Volume: 500
▶ Max Throughput/Volume: 500 MB/s
▶ Price: $0.045/GB-month

▶ Low-cost HDD (SC1) – ideal for less frequently accessed
workloads with large, cold datasets.
▶ Colder data requiring fewer scans per day.
▶ Volume Size: 500 GB – 16 TB.
▶ Max IOPS/Volume: 250
▶ Max Throughput/Volume: 250 MB/s
▶ Price: $0.025/GB-month

EBS Volume Types – SSD based
▶ Provisioned IOPS SSD (IO1) – high performance SSD volume

designed for latency-sensitive transactional workloads.
▶ I/O-intensive NoSQL & relational databases.
▶ Volume Size: 4 GB – 16 TB.
▶ Max IOPS/Volume: 64,000
▶ Max Throughput/Volume: 1,000 MB/s
▶ Price: $0.125/GB-month + $0.065/provisioned IOPS

▶ Default EBS volume type (GP2) – ideal for suitable for a
broad range of transactional workloads.
▶ Boot volumes, low-latency interactive apps, dev & test.
▶ Volume Size: 1 TB – 16 TB.
▶ Max IOPS/Volume: 16,000
▶ Max Throughput/Volume: 250 MB/s
▶ Price: $0.10/GB-month

What is a Shell?
▶ The user interface to the operating system
▶ Functionality:

▶ Execute other programs
▶ Manage files
▶ Manage processes

▶ A program like any other
▶ Executed when you “open a Terminal”
▶ The shell

▶ Allows the execution of command scripts
▶ Enables alternative methods to carry out complex tasks
▶ Provides variables

Shell Interactive Use
▶ The # is called the “prompt”
▶ In the prompt we type the name of the command and press

“Enter”
▶ The prompt allows

▶ Command history
▶ Command line editing
▶ File expansion (tab completion)
▶ Command expansion
▶ Key bindings
▶ Spelling correction
▶ Job control

Prompt: The Command Line

date

Sat Apr 21 16:47:30 GMT 2007

Error Handling
▶ If we type a wrong command, an error message appears

Prompt: The Command Line

datee

datee: no such file or directory

▶ The error message states that either the file or the folder
(directory) was not found
▶ In the prompt all commands are assumed to be connected to a

file . . .
▶ The arrow keys ↑ ↓ allow to look-up previous commands
▶ The arrow keys ← → allow to move within the same

command line

Terminating Command Execution
▶ We can interrupt the execution of a command by pressing

ctrl-c
▶ We can “freeze” the output of the execution of a command

by pressing ctrl-s
▶ To “un-freeze” the output of a command we use ctrl-q
▶ Note – only the output is frozen not the actual execution

▶ To close a terminal we use ctrl-d
▶ We may need to press multiple times ctrl-q
▶ All programs currently running will terminate

Manual Pages
▶ The command man allows to access the manual pages
▶ Manual pages are organized in categories

1. Commands – ls, cp, grep
2. System Calls – fork, exit
3. Libraries
4. I/O Files
5. File Encoding Types
6. Games
7. Miscellaneous
8. Administrator’s Commands
9. Documents

▶ We can request a page from a specific category
man [category] [topic]

Manual Pages File System
▶ All system entities are abstracted as files

▶ Folders and files
▶ Commands and applications
▶ I/O devices
▶ Memory
▶ Process communication

▶ The file system is hierarchical
▶ Folders and files construct a tree structure
▶ The root of the tree is represented using the /

▶ The actual structure of the tree depends on the distribution of
Linux
▶ Certain folders and files are standard across all Linux

distributions

File System Example Standard Folders
▶ /bin – Basic commands
▶ /etc – System settings
▶ /usr – Applications and Libraries
▶ /usr/bin – Application commands
▶ /usr/local – Applications installed by the local users
▶ /sbin – Administrator commands
▶ /var – Various system files
▶ /tmp – Temporary files
▶ /dev – Devices
▶ /boot – Files needed to start the system
▶ /root – Administrator’s folder

Example of File Metadata

ls -la

lrwxrwxrwx 1 bin operator 2880 Jun 1 1993 bin

-r--r--r-- 1 root operator 448 Jun 1 1993 boot

drwxr-sr-x 2 root operator 11264 May 11 17:00 dev

drwxr-sr-x 10 root operator 2560 Jul 8 02:06 etc

drwxrwxrwx 1 bin bin 7 Jun 1 1993 home

lrwxrwxrwx 1 root operator 7 Jun 1 1993 lib

drwxr-sr-x 2 root operator 512 Jul 23 1992 mnt

drwx------ 2 root operator 512 Sep 26 1993 root

drwxr-sr-x 2 bin operator 512 Jun 1 1993 sbin

drwxrwxrwx 6 root operator 732 Jul 8 19:23 tmp

drwxr-xr-x 27 bin bin 1024 Jun 14 1993 usr

drwxr-sr-x 10 root operator 512 Jul 23 1992 var

Navigating the File System

▶ Each folder contains two
“virtual” folders
ls -la

. ..

▶ The single dot represents
the same folder
./myfile ⇒ myfile

▶ The two dots represent
the “parent” folder in
the tree

File System Security
▶ For each file we have 16 bit to define authorization

▶ 12 bit are used by the operator
▶ They are split in 4 groups of 3 bit – 1 octal – each

▶ The first 4 bit cannot be changed
▶ They characterize the type of the file (simple file, folder,

symbolic link)
▶ When we list the contents of a folder the first letter is used to

signify:
- – simple files
d – folders
l – symbolic links

▶ The next 3 bit are known as the s-bits and t-bit
▶ The last three groups are used to define the access writes for

read ’r’, write ’w’ and execute ’x’
▶ For the file owner, users of the same group, and all other users.

File System Permissions Examples

Type Owner Group Anyone

d rwx r-x ---

▶ Folder
▶ The owner has full access
▶ All users that belong to the group defined by the file can read

and execute the file – but not modify the contents
▶ All other users cannot access the file or execute it
▶ To access a folder we use the command cd given that we have

permission to execute ’x’

Changing the File Permissions

Examples of File Permissions

Binary Octal Text

001 1 x

010 2 w

100 4 r

110 6 rw-

101 5 r-x

- 644 rw-r--r--

▶ The command chmod allows to modify the permissions
▶ There are 2 way to define the new permissions

1. Defining the 3 Octal – e.g., 644
2. By using text – e.g., a+r

Some Examples of chmod

make read/write-able for everyone

chmod a+w myfile

add the 'execute' flag for directory

chmod u+x mydir/

open all files for everyone

chmod 755 *

make file readonly for group

chmod g-w myfile

descend recursively into directory opening all files

chmod -R a+r mydir/

Changing the Owner and Group of a File
▶ The command chown allows to change the owner of a file
▶ The command chgrp allows to change the group of a file

give ownership to ichatz

chown ichatz myfile

set group to students

chgrp students mydir/

give ownership to pcs and group to students

chgrp pcs:students myfile mydir/

descend recursively into directory opening all files

chown -R ichatz mydir/

Symbolic Links
▶ The file system enables to create symbolic links
▶ Two types are provided

▶ Symbolic link
▶ Hard link

▶ The contents and metadata of the original file are used for all
operations

create a symbolic link to a directory

ln -s /var/log ./log

ls -lg

lrwxrwxrwx 1 operator 8 Apr 25 log -> /var/log

▶ The contents and metadata of the original file are used for all
operations
▶ Except for deletion.

Examples of Symbolic Links Access Dates

▶ For each file the system keeps track of
▶ Date of last usage/access
▶ Date of last change

check last usage time

ls -lu

drwxrwxrwx 1 bin bin 7 Apr 25 1993 home

lrwxrwxrwx 1 root operator 7 Apr 25 1993 lib

drwx------ 2 root operator 512 Mar 30 1993 root

check last change time

ls -lc

drwxrwxrwx 1 bin bin 7 Apr 25 1993 home

lrwxrwxrwx 1 root operator 7 Oct 27 1993 lib

drwx------ 2 root operator 512 Oct 27 1993 root

