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Microarray Analysis

» What do newly sequenced genes do?

» Simply comparing new gene sequences to known DNA
sequences often does not reveal the function of a new gene.

» For 40% of sequenced genes, functionality cannot be
ascertained by comparing to sequences of other known genes.

» It is easier to interpret data if it is organized into clusters that
combine similar (i.e., related) data points.

Analysis of Data

» Viewing and analyzing vast amounts of biological data in its
unstructured entirety can be perplexing.

P |t is easier to interpret data if it is organized into clusters that
combine similar (i.e., related) data points.

Analyzing data from DNA microarray experiments (expression
analysis — i.e., determining which genes are switched “on" or “off”
under certain conditions of interest).

Building and understanding phylogenetic (evolutionary) trees based
on genomic or other data.

Microarrays and expression analysis

» Microarrays measure activity (expression level) of genes under
varying conditions and/or points in time.

» Expression level is estimated by measuring amount of mRNA
for that particular gene:

P A gene is active if it is being transcribed.
> More mRNA usually indicates more gene activity.




A Microarray Experiment

» Produce cDNA from mRNA (cDNA is more stable)

» Label cDNA with a fluorescent dye or biotin for detection

» Different color labels are available to compare many samples
at once

» Wash cDNA over the microarray containing thousands of high
density probes that hybridize to complementary strands in the
sample and immobilize them on the surface.

» For biotin-labeled samples, stain with the biotin-specific
fluorescently labeled antibody

» Read the microarray, using a laser or a high-resolution CCD

» Illumination reveals transcribed/co-expressed genes

A Microarray Experiment
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A Microarray Experiment
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Microarray Data Transformation

» Microarray data are usually transformed into a (relative,
normalized) intensity matrix

» Can also be represented as a bit matrix (logy of relative
intensity)

» The intensity matrix allows biologists to infer correlations
between different genes (even if they are dissimilar) and to
understand how genes functions might be related

» Care must be taken to normalize the data appropriately, e.g.
different time points can come from different arrays.
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Microarray Data Intensity Matrix Euclidean Distance in D-dimensions
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Finding Similar Genes The Clustering Problem

» Motivation: Find patterns in a sea of data
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Clustering Principles
» Homogeneity — elements of the same cluster are maximally
close to each other.
» Separation — elements in separate clusters are maximally far
apart from each other.
» One is actually implied by the other (in many cases).
» Generally it is a hard problem.
» Clustering in 2 dimensions looks easy
» Clustering small amounts of data looks easy
» High-dimensional spaces look different — Almost all pairs of
points are at about the same distance

Intra/Inter Cluster Distances

Inter-cluster
distances are
maximized

Intra-cluster
distances are
minimized

» Suitably select distance metric.
» Maximize Inter-cluster distances.
» Minimize Intra-cluster distances.

Some Examples

» Both principles are violated » More reasonable assignment.

» We need to use an objective
function to optimize cluster
assignment.

» Points in the same cluster
are far apart

» Points in different cluster
are close

Distance Measures
» Each clustering problem is based on some kind of “distance”

between points.
» Two major classes of distance measure:
1. Euclidean
2. Non-Euclidean
» A Euclideanspace has some number of real-valued dimensions.
» There is a notion of “average” of two points.
> A Euclidean distance is based on the locations of points in
such a space.
» A Non-Euclidean distance is based on properties of points, but

not their “location” in a space.




Axioms of a Distance Measure Some Euclidean Distances

d is a distance measure if it is a function from pairs of points to Ly norm: d(x, y) = square root of the sum of the squares of the
real numbers such that: differences between x and y in each dimension.
1. d(x,y) >0 The most common notion of “distance”.
2. d(x,y)=0 iff x=1y
3. d(x,y) =d(y,x) L; norm: sum of the differences in each dimension.
4. d(x,y) < d(x,z)+ d(z,y) (triangle inequality) Manhattan distance = distance if you had to travel along
coordinates only.
L,-norm: y =(9.,8)
dist(x,y) =
V(42432)

=5
3
L,-norm:
4 dist(x,y) =
Some Non-Euclidean Distances Jaccard Distance for Sets
Jaccard distance for sets = 1 minus ratio of sizes of intersection Example: p; = 10111; p, = 10011.
and union. Size of intersection = 3; size of union = 4, Jaccard similarity (not

distance) = 3.

— 1
d(x,y) = 1-(Jaccard similarity) = 1.
Cosine distance = angle between vectors from the origin to the

points in question. Why JD is a distance measure?

1. d(x,x) =0 because x N x = x U x

2. d(x,y) = d(y, x) because union and intersection are
Edit distance = number of inserts and deletes to change one string symmetric
into another. 3. d(x,y) > 0 because |xNy| < |[xUy]|

4. d(x,y) < d(x,z)+ d(z,y) more difficult...

x| el vl
(1 |xUz|> + (1 |yUz|> 21—y




Edit Distance Why Edit Distance is a Distance Measure?

1. d(x,x) = 0 because 0 edits suffice.
The edit distance of two strings is the number of inserts and deletes 2

_ _ . d(x,y) = d(y, x) because insert/delete are inverses of each
of characters needed to turn one into the other. Equivalently:

other
d(x,y) = |x| + y| — 2|LCS(x, y)] 3. d(x,y) > 0 no notion of negative edits
4. d(x,y) < d(x,z)+ d(z,y) Triangle inequality:
LCS = IOngeSt common subsequence = any |Ongest String obtained Changing x to z and then to y is one way to Change x toy.
both by deleting from x and deleting from vy.
Example
» x = abcde ; y = bcduve.
» Turn x into y by deleting a, then inserting u and v after d.
Edit distance = 3.
» Or, LCS(x,y) = bcde.
» Note: |x|+ |y| —2|LCS(x,y)| =546 —2 x 4 = 3 = edit dist
Hierarchical Clustering Agglomerative Hierarchical Clustering
» Produces a set of nested clusters organized as a hierarchical » [Initially, each point is a cluster
tree » Repeatedly combine the two “nearest” clusters into one

» Can be visualized as a dendrogram — A tree like diagram that
records the sequences of merges or splits

Compute the proximity matrix
Let each data point be a cluster

02f *6 Repeat
o4 Merge the two closest clusters

0.15] 3, 4 Update the proximity matrix

*5 Until only a single cluster remains
01 e 2
005 KIS » Key operation is the computation of the proximity of two

3 clusters
0 3 > 5 7 5 » Different approaches to defining the distance between clusters

distinguish the different algorithms




How to define Inter-cluster similarity? Minimum — Example

Minimum — based on the two most similar (closest) points in the
Similarity? different clusters
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» Minimum — based on the two most similar (closest) points in

the different clusters *S . 2 N

» Maximum — based on the two least similar (most distant) - ot
points in the different clusters ®6 01
» Group Average 005
L
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Minimum — Example Minimum — Example
Minimum — based on the two most similar (closest) points in the Minimum — based on the two most similar (closest) points in the
different clusters different clusters
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Minimum — Example Minimum — Example

Minimum — based on the two most similar (closest) points in the Minimum — based on the two most similar (closest) points in the
different clusters different clusters
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Minimum — Limitations Maximum — Example
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Maximum — Example Maximum — Example

Maximum — based on the two least similar (most distant) points in Maximum — based on the two least similar (most distant) points in
the different clusters the different clusters
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Maximum — Limitations

Original Points Two Clusters

Cluster Initialization

» Start by picking k, the number of clusters

» Initialize clusters by picking one point per cluster

Example: Pick one point at random, then k — 1 other points, each
as far away as possible from the previous points

=

K-means Algorithm
» Developed and published in Applied Statistics by Hartigan and

Wong, 1979.
» Many variations have been proposed since then.

» Standard/core function of R, Python, Matlab, ...
» Assumes Euclidean space/distance

The aim of the K-means algorithm is to divide M points in N
dimensions into k clusters so that the within-cluster sum of squares
is minimized.

k

1 P
min.Cl’m’CK Z m Z Z(X’J - Xi'j)2

k=1 ii'eCe J=1

Populating Clusters

1. For each point, place it in the cluster whose current centroid
it is nearest

2. After all points are assigned, update the locations of centroids
of the k clusters

3. Reassign all points to their closest centroid
P> Sometimes moves points between clusters

4. Repeat 2 and 3 until convergence

Convergence: Points do not move between clusters and centroids
stabilize




A Simple Example A Simple Example

X X
X X
X X
X X
x &J
X X X X x X X X x X x X
X ... data point X ... data point
0O centroid Clusters after round 1 0O centroid Clusters after round 1
A Simple Example A Simple Example
X X
X X
X X
X X
&J &l
X X X x X X X X x X
X ... data point X ... data point

0O centroid Clusters after round 1 0 - centroid Clusters after round 1




A Simple Example A Simple Example

X X
X X
X X
O
X X
& x
X X X x X X B X X x X
X ... data point X ... data point
O centroid Clusters after round 1 O - centroid Clusters after round 2
A Simple Example A Simple Example
X X
X X

X ... data point X ... data point
[ - centroid Clusters after round 2 [ - centroid Clusters after round 2




A Simple Example A Simple Example

X X
X X
X X E X x X X X B X x X
X ... data point X ... data point
0O centroid Clusters at the end 0O centroid Clusters at the end
A Simple Example How to select k?
» We use the elbow method to determine the optimum number

of clusters.

» Try different k, looking at the change in the average distance
to centroid as k increases.
» Average falls rapidly until right k, then changes little.

&

Choose K=3

Cost function .J

K (no. of clusters)

X ... data point

[ - centroid Clusters at the end




Selection of k — an example Selection of k — an example

.rrn(:rz fﬁx Just right;
1any fong distances
distances
. rather short.
to centroid.
Selection of k — an example Loading the Iris dataset

import pandas as pd
Too many; P P P
!'tﬂe improvement data = pd.read_csv('iris.csv',
ln. average names=['slength', 'swidth',
distance. 'plength', 'pwidth', 'name'l)




One-dimensional clustering Two-dimensional clustering

values = datal[['slength']] kmeans = KMeans(n_clusters=3, init='random')
values = data[['slength', 'swidth'l]

from sklearn.cluster import KMeans kmeans.fit(values)

kmeans = KMeans(n_clusters=3, init='random') labels = kmeans.predict(values)

values["clusters"] = labels
kmeans.fit (values)

import matplotlib.pyplot as plt

centroids = model.cluster_centers_ for k in range(0,3):
plt.scatter(values[values.clusters==k] [['slength']],
¢ = kmeans.predict(values) values[values.clusters==k] [['swidth']])
plt.show()
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Examining the number of clusters

sd = {}

for k in range(1,20):
modelk = KMeans(n_clusters=k)
modelk.fit(values)
sd[k] = modelk.inertia_

plt.figure()

plt.plot(list(sd.keys()), list(sd.values()))
plt.xlabel("Number of clusters")
plt.ylabel("Cost function")

plt.show()
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Cost function




