Principles of Computer Science II Working with Data Sets

Ioannis Chatzigiannakis

Sapienza University of Rome

Lecture 15

Microarray Analysis

- ▶ What do newly sequenced genes do?
- ► Simply comparing new gene sequences to known DNA sequences often does not reveal the function of a new gene.
- ► For 40% of sequenced genes, functionality cannot be ascertained by comparing to sequences of other known genes.
- ▶ It is easier to interpret data if it is organized into clusters that combine similar (i.e., related) data points.

Analysis of Data

- ▶ Viewing and analyzing vast amounts of biological data in its unstructured entirety can be perplexing.
- ▶ It is easier to interpret data if it is organized into clusters that combine similar (i.e., related) data points.

Analyzing data from DNA microarray experiments (expression analysis - i.e., determining which genes are switched "on" or "off" under certain conditions of interest).

Building and understanding phylogenetic (evolutionary) trees based on genomic or other data.

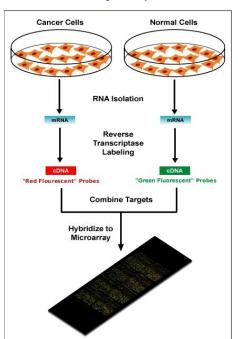
Microarrays and expression analysis

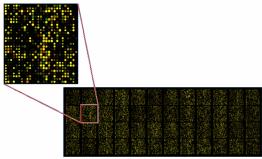
- ► Microarrays measure activity (expression level) of genes under varying conditions and/or points in time.
- ► Expression level is estimated by measuring amount of mRNA for that particular gene:
 - A gene is active if it is being transcribed.
 - ► More mRNA usually indicates more gene activity.

A Microarray Experiment

- Produce cDNA from mRNA (cDNA is more stable)
- ► Label cDNA with a fluorescent dye or biotin for detection
- ▶ Different color labels are available to compare many samples at once
- ▶ Wash cDNA over the microarray containing thousands of high density probes that hybridize to complementary strands in the sample and immobilize them on the surface.
- ► For biotin-labeled samples, stain with the biotin-specific fluorescently labeled antibody
- ▶ Read the microarray, using a laser or a high-resolution CCD
- ► Illumination reveals transcribed/co-expressed genes

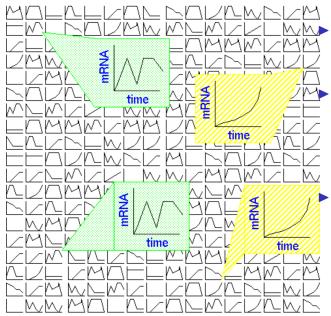
A Microarray Experiment





- Green: expressed only in control
- Red: expressed only in an experimental cell
- Yellow: equally expressed in both samples
- ▶ Black: NOT expressed in either control or sample

A Microarray Experiment



Boxes: Gene's expression over time

Track sample over period of time: see how gene expression changes.

Track two different samples under same conditions: see differences in gene expression.

Microarray Data Transformation

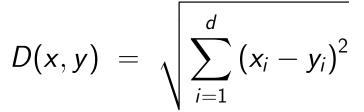
- Microarray data are usually transformed into a (relative, normalized) intensity matrix
- ► Can also be represented as a bit matrix (*log*₂ of relative intensity)
- ► The intensity matrix allows biologists to infer correlations between different genes (even if they are dissimilar) and to understand how genes functions might be related
- ► Care must be taken to normalize the data appropriately, e.g. different time points can come from different arrays.

Microarray Data Intensity Matrix

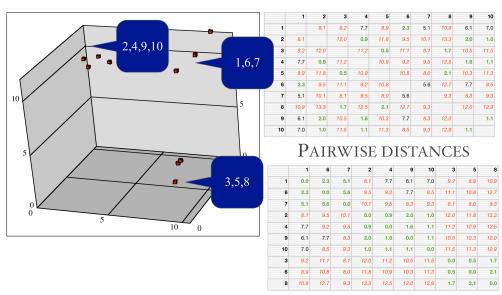
Euclidean Distance in D-dimensions

- Which genes are similar?
- What defines co-expression?
- ► How to measure the distance/similarity?

Gene	Time I	Time 2	Time 3
1	10	8	10
2	10	0	9
3		8.5	3
4	9.5	0.5	8.5
5	4.5	8.5	3
6	10.5	9	12
7	5	8.5	- 11
8	2.7	8.7	2
9	9.7	2	9
10	10.2	1	9.2



Finding Similar Genes



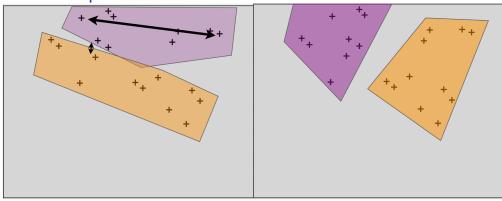
REARRANGED DISTANCES

The Clustering Problem

- ▶ Motivation: Find patterns in a sea of data
- ► Input
 - ► A (large) number of datapoints: *N*
 - \triangleright A measure of distance between any two data points d_{ij}
- Output
 - ► Groupings (clustering) of the elements into K (the number can be user-specified or automatically determined) 'similarity' classes
 - ► Sometimes there is also an objective measure that the obtained clustering seeks to minimize.

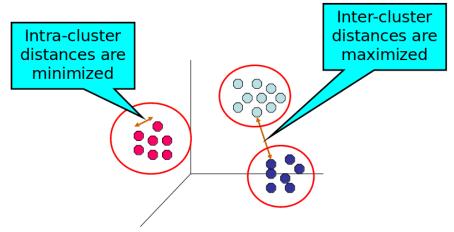
Clustering Principles

- ► Homogeneity elements of the same cluster are maximally close to each other.
- ➤ Separation elements in separate clusters are maximally far apart from each other.
- ▶ One is actually implied by the other (in many cases).
- ► Generally it is a hard problem.
 - ► Clustering in 2 dimensions looks easy
 - Clustering small amounts of data looks easy
 - ► High-dimensional spaces look different Almost all pairs of points are at about the same distance



- Both principles are violated
- Points in the same cluster are far apart
- ▶ Points in different cluster are close
- ► More reasonable assignment.
- We need to use an objective function to optimize cluster assignment.

Intra/Inter Cluster Distances



- Suitably select distance metric.
- Maximize Inter-cluster distances.
- Minimize Intra-cluster distances.

Distance Measures

- Each clustering problem is based on some kind of "distance" between points.
- ► Two major classes of distance measure:
 - 1. Euclidean
 - 2. Non-Euclidean
- ▶ A Euclideanspace has some number of real-valued dimensions.
 - ► There is a notion of "average" of two points.
 - ► A Euclidean distance is based on the locations of points in such a space.
- ► A Non-Euclidean distance is based on properties of points, but not their "location" in a space.

Axioms of a Distance Measure

d is a distance measure if it is a function from pairs of points to real numbers such that:

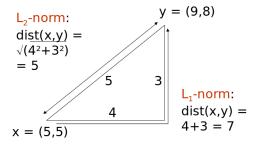
- 1. d(x, y) > 0
- 2. d(x, y) = 0 iff x = y
- 3. d(x, y) = d(y, x)
- 4. d(x,y) < d(x,z) + d(z,y) (triangle inequality)

Some Fuclidean Distances

 L_2 norm: d(x, y) = square root of the sum of the squares of the differences between x and y in each dimension.

The most common notion of "distance".

 L_1 norm: sum of the differences in each dimension. Manhattan distance = distance if you had to travel along coordinates only.



Some Non-Fuclidean Distances

 $\sf Jaccard\ distance$ for sets =1 minus ratio of sizes of intersection and union.

Cosine distance = angle between vectors from the origin to the points in question.

Edit distance = number of inserts and deletes to change one string into another.

Jaccard Distance for Sets

Example: $p_1 = 10111$; $p_2 = 10011$.

Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = $\frac{3}{4}$.

$$d(x, y) = 1 - (Jaccard similarity) = \frac{1}{4}$$
.

Why JD is a distance measure?

- 1. d(x,x) = 0 because $x \cap x = x \cup x$
- 2. d(x,y) = d(y,x) because union and intersection are symmetric
- 3. $d(x,y) \ge 0$ because $|x \cap y| \le |x \cup y|$
- 4. d(x,y) < d(x,z) + d(z,y) more difficult... $\left(1 \frac{|x \cap z|}{|x \cup z|}\right) + \left(1 \frac{|y \cap z|}{|y \cup z|}\right) \ge 1 \frac{|x \cap y|}{|x \cup y|}$

Edit Distance

The edit distance of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently:

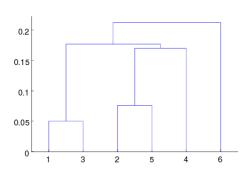
$$d(x, y) = |x| + |y| - 2|LCS(x, y)|$$

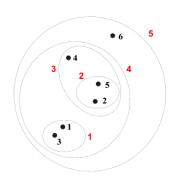
LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.

Example

- \triangleright x = abcde; y = bcduve.
- ► Turn x into y by deleting a, then inserting u and v after d. Edit distance = 3.
- ightharpoonup Or, LCS(x,y) = bcde.
- Note: $|x| + |y| 2|LCS(x, y)| = 5 + 6 2 \times 4 = 3 = \text{edit dist}$

- Produces a set of nested clusters organized as a hierarchical tree
- ► Can be visualized as a dendrogram A tree like diagram that records the sequences of merges or splits





Why Edit Distance is a Distance Measure?

- 1. d(x,x) = 0 because 0 edits suffice.
- 2. d(x,y) = d(y,x) because insert/delete are inverses of each other
- 3. $d(x, y) \ge 0$ no notion of negative edits
- 4. d(x,y) < d(x,z) + d(z,y) Triangle inequality: changing x to z and then to y is one way to change x to y.

Agglomerative Hierarchical Clustering

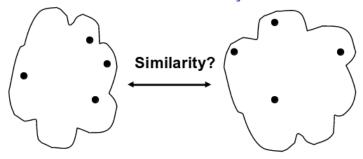
- ► Initially, each point is a cluster
- ▶ Repeatedly combine the two "nearest" clusters into one

Compute the proximity matrix Let each data point be a cluster Repeat

Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

- Key operation is the computation of the proximity of two clusters
- ▶ Different approaches to defining the distance between clusters distinguish the different algorithms

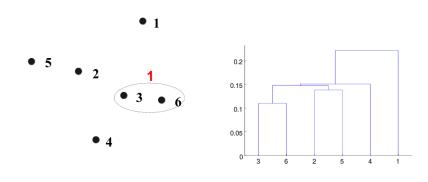
How to define Inter-cluster similarity?



- ► Minimum based on the two most similar (closest) points in the different clusters
- ► Maximum based on the two least similar (most distant) points in the different clusters
- ► Group Average

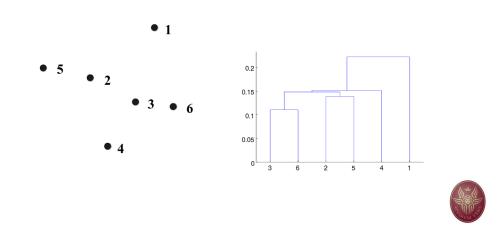
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



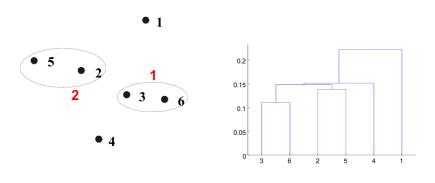
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



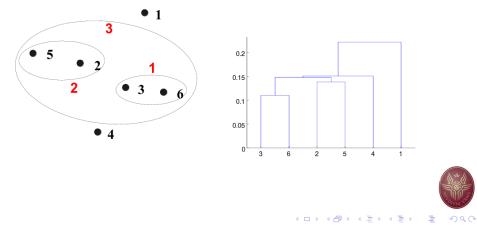
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



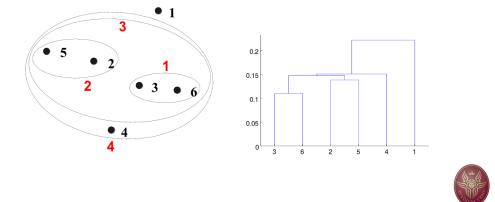
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters



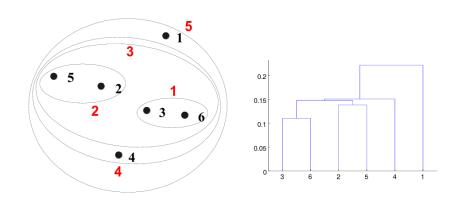
Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters

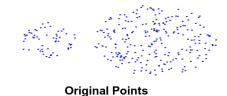


Minimum – Example

Minimum – based on the two most similar (closest) points in the different clusters

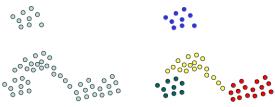


Minimum – Strength



Two Clusters

Minimum – Limitations



Original Points

Four clusters

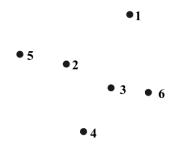
Three clusters:

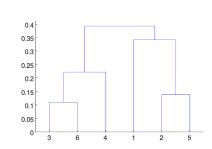
The yellow points got wrongly merged with the red ones, as opposed to the green one.

Sensitive to noise and outliers

Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters



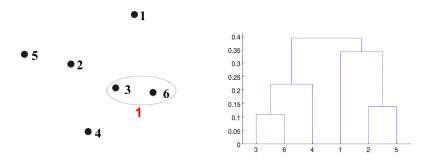


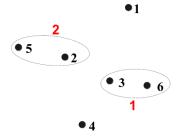
Maximum – Example

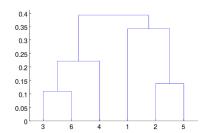
Maximum – based on the two least similar (most distant) points in the different clusters

Maximum – Example

Maximum – based on the two least similar (most distant) points in the different clusters

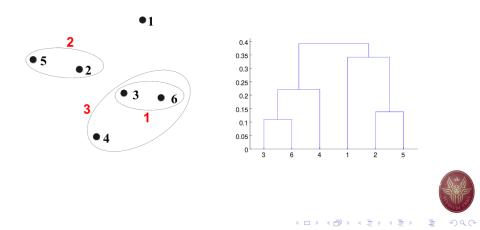






Maximum – Example

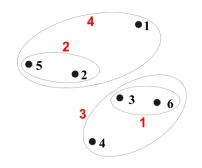
the different clusters

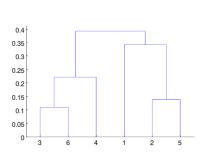


Maximum - based on the two least similar (most distant) points in

Maximum – Example

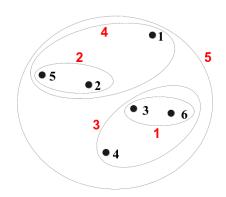
Maximum – based on the two least similar (most distant) points in the different clusters

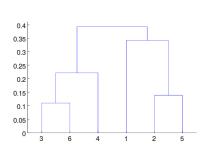




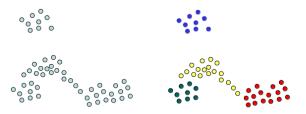
Maximum – Example

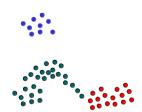
Maximum - based on the two least similar (most distant) points in the different clusters





Maximum – Strength





Original Points

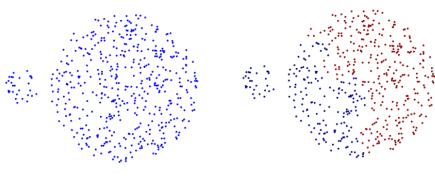
Four clusters

Three clusters:

The yellow points get now merged with the green one.

Less susceptible respect to noise and outliers

Maximum – Limitations



Original Points

Two Clusters

- ightharpoonup Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster

Example: Pick one point at random, then k-1 other points, each as far away as possible from the previous points

K-means Algorithm

- Developed and published in Applied Statistics by Hartigan and Wong, 1979.
- ▶ Many variations have been proposed since then.
- ▶ Standard/core function of R, Python, Matlab, . . .
- ► Assumes Euclidean space/distance

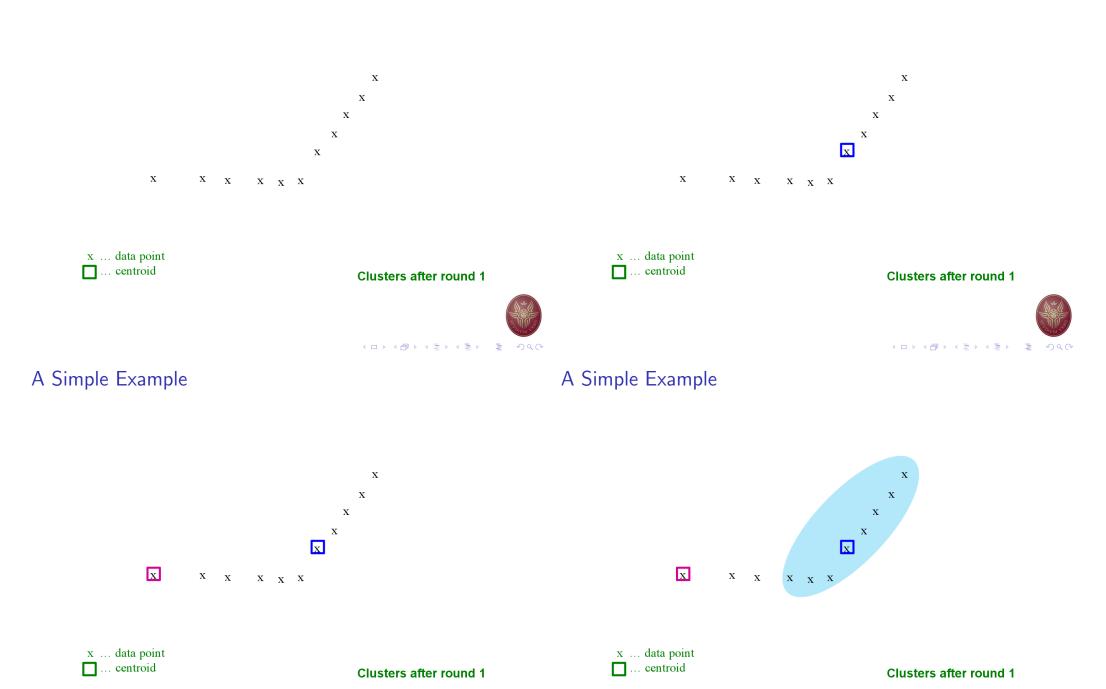
The aim of the K-means algorithm is to divide M points in N dimensions into k clusters so that the within-cluster sum of squares is minimized.

$$\min_{C_1, \dots, C_K} \sum_{k=1}^k \frac{1}{|C_k|} \sum_{i, i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

- 1. For each point, place it in the cluster whose current centroid it is nearest
- 2. After all points are assigned, update the locations of centroids of the k clusters
- 3. Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- 4. Repeat 2 and 3 until convergence

Convergence: Points do not move between clusters and centroids stabilize

A Simple Example

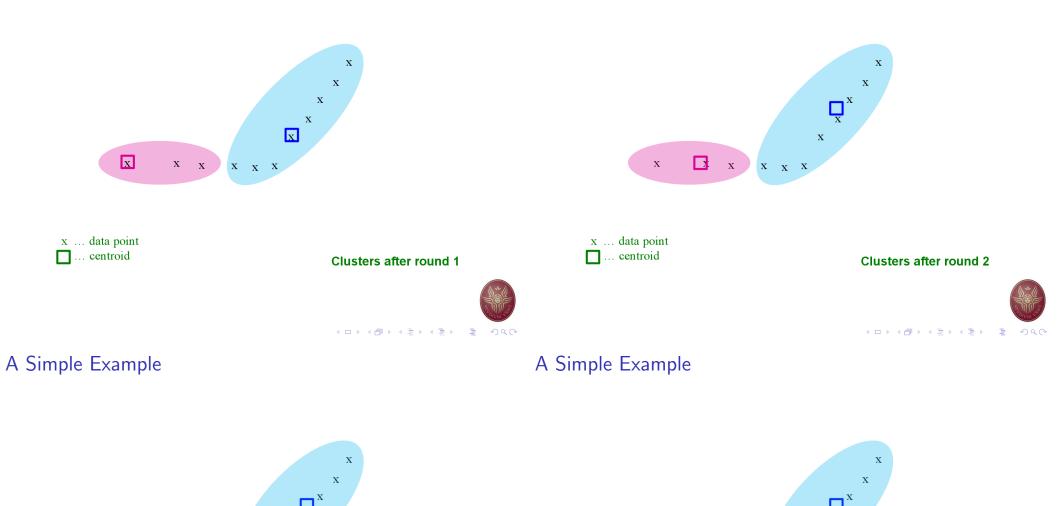


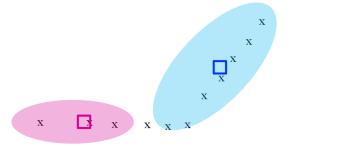
4 D > 4 B > 4 B > E 990

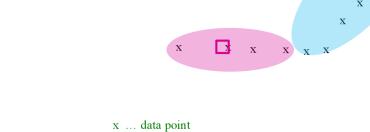
x ... data point

... centroid

A Simple Example







... centroid

Clusters after round 2

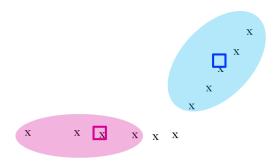
A Simple Example

X X

x ... data point ... centroid

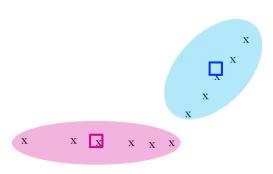
Clusters at the end

A Simple Example



Clusters at the end

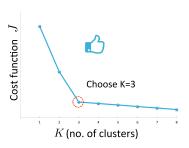
A Simple Example



Clusters at the end

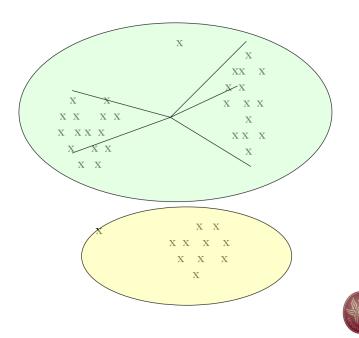
How to select k?

- ▶ We use the elbow method to determine the optimum number of clusters.
- ightharpoonup Try different k, looking at the change in the average distance to centroid as k increases.
- Average falls rapidly until right k, then changes little.

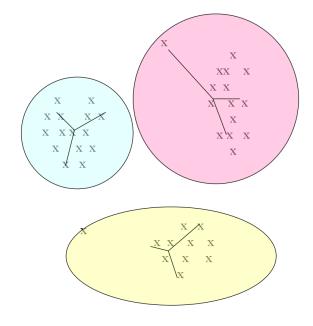


Selection of k – an example

Too few; many long distances to centroid.

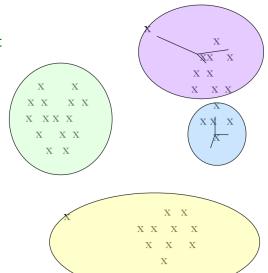


Just right; distances rather short.



Selection of k – an example

Too many; little improvement in average distance.



Loading the Iris dataset

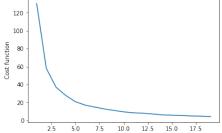
One-dimensional clustering

```
values = data[['slength']]
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3, init='random')
kmeans.fit(values)
centroids = model.cluster_centers_
c = kmeans.predict(values)
```


Examining the number of clusters

```
sd = {}
for k in range(1,20):
    modelk = KMeans(n_clusters=k)
    modelk.fit(values)
    sd[k] = modelk.inertia_

plt.figure()
plt.plot(list(sd.keys()), list(sd.values()))
plt.xlabel("Number of clusters")
plt.ylabel("Cost function")
plt.show()
```



Two-dimensional clustering

