
General Synchronous Networks Synchronous Networks with Failures

Pervasive Systems

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 11:
Broadcast, Convergecast & Distributed Data Structures

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 1 / 29

General Synchronous Networks Synchronous Networks with Failures

General Synchronous Networks

Strongly Connected General Network

The graph is strongly connected.
Each process has UID – is not aware of the UID of the other
processes.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 2 / 29

General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Algorithm Flood

Every process maintains a record of the maximum UID it has seen
so far (initially its own). At each round, each process propagates
this maximum on all of its outgoing edges. After diam(G ) rounds,
all nodes will know the maximum UID in the network.

Processes are not aware of the total number of processes (n).
Processes are aware of the network diameter — δ = diam(G )

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 3 / 29

General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Pseudo-code for Flood

#DEFINE UID = <...>;

#DEFINE δ = <...>;

void main() {
int max id = UID;
for (int i = 0 ; i < δ; i++ ) {

sendMessage(max id);
while (int new msg = readMessage()) {

if (new msg > max id)
max id = new msg;

}
}

}

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 4 / 29



General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Example of Execution for Flood Algorithm

Let a synchronous distributed system of
n = 8 processes..

General network where δ = 3
Processes are index 1 . . . 8

The processes have UID.

Not aware of the UID of the other
processes.

First Round

Second Round

Final Round

General Network

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 5 / 29

General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Example of Execution for Flood Algorithm

Let a synchronous distributed system of
n = 8 processes..

General network where δ = 3
Processes are index 1 . . . 8

The processes have UID.

Not aware of the UID of the other
processes.

First Round

Second Round

Final Round

General Network

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 5 / 29

General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Example of Execution for Flood Algorithm

Let a synchronous distributed system of
n = 8 processes..

General network where δ = 3
Processes are index 1 . . . 8

The processes have UID.

Not aware of the UID of the other
processes.

First Round

Second Round

Final Round

General Network

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 5 / 29

General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Example of Execution for Flood Algorithm

Let a synchronous distributed system of
n = 8 processes..

General network where δ = 3
Processes are index 1 . . . 8

The processes have UID.

Not aware of the UID of the other
processes.

First Round

Second Round

Final Round

General Network

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 5 / 29



General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Example of Execution for Flood Algorithm

Let a synchronous distributed system of
n = 8 processes..

General network where δ = 3
Processes are index 1 . . . 8

The processes have UID.

Not aware of the UID of the other
processes.

First Round

Second Round

Final Round

General Network

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 5 / 29

General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Properties of Flood Algorithm

Let n processes and m channels, where the process with the
highest UID is imax .

Process imax is identified at the end of round δ.
Time complexity is O (diam(G )).
Message complexity O (diam(G ) ·m).

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 6 / 29

General Synchronous Networks Synchronous Networks with Failures

A Simple Flooding Algorithm

Proof of Correctness

Theorem (3.3)

In the Flood algorithm, process imax is identified at the end of
round δ.

Proof.

The key to the proof is the fact that after r rounds, the maximum
UID has reached every process that is within distance r of imax .
In view of the definition of the diameter of the graph, this implies
that every process has the maximum UID by the end of δ rounds.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 7 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Directed spanning tree

A directed spanning tree of a directed graph G = (V ,E ) is a
rooted tree that consists entirely of directed edges in E , all edges
directed from parents to children in the tree, and that contains
every vertex of G .

Breadth-First directed spanning tree

A directed spanning tree of G with root i is breadth-first provided
that each node at distance d from i in G appears at depth d in the
tree.

Every strongly connected digraph has a breadth-first directed
spanning tree.
Constructing a Breadth-First directed spanning tree is useful
for efficient collection of information.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 8 / 29



General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

SynchBFS Algorithm

At any point during execution, there is some set of processes that
is “marked”, initially just i0. Process i0 sends out a search message
at round 1, to all of its outgoing neighbors. At any round, if an
unmarked process receives a search message, it marks itself and
chooses one of the processes from which the search has arrived as
its parent. At the first round after a process gets marked, it sends
a search message to all of its outgoing neighbors.

Processes are not aware of the total number of processes (n)
All processes have UIDs.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 9 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

Initial Network

The network contains 9 processes, 14
channels

Process 1 initiates the execution.

Process 1 is marked.

All other processes are not marked.

Initial State

1

5

2

6

3

7

9

4

8

1

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors.

1st Round – 1st Step

1

5

2

6

3

7

9

4

8

1

s

s

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors.

1st Round – 2nd Step

Processes 2, 5 are marked.

Processes 2, 5 select 1 as parent
process.

1st Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

1

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29



General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors.

2nd Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

1

s

s

s
s

s s
s

s

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors.

2nd Round – 2nd Step

Process 1 ignores all search messages
received.

Processes 3, 4, 7, 8, 9 are marked.

Processes 3, 8 set process 5 as parent
process.

Processes 4, 7 set process 2 as parent
process.

Process 9 chooses (randomly) process 2 as

parent process.

2nd Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

5

21

2

5

2

s

s

s

s

s

s

s

s
s

s

s

s

s
s s

s

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 2nd Step

Processes 2, 3, 4, 5, 7, 8, 9 ignore the
search messages received.

Process 6 is marked.

Process 6 chooses (randomly) process 8
as parent process.

3rd Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29



General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

4th Round – 1st Step

Process 6 sends search to all neighbors.

4th Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

s

s

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

4th Round – 1st Step

Process 6 sends search to all neighbors.

4th Round – 2nd Step

Processes 4, 8 ignore the search
messages received.

4th Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Example of Execution for SyncBFS Algorithm

Final Step

Breadth-first directed spanning tree is
constructed.

Total number of rounds: 4

Total number of messages: 28

Final State

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 10 / 29

General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Properties of SynchBFS Algorithm

Algorithm SynchBFS constructs a breadth-first directed
spanning tree.
The structure is not stored in some “centralized” process.
The tree pointers are “distributed” across the network.
The time complexity is O (diam(G ))

In practice it is the maximum distance from u0

In the example, the diameter is 4 – maximum distance from u0

is 3.

Message complexity: O (m)

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 11 / 29



General Synchronous Networks Synchronous Networks with Failures

Breadth-First Search

Improving Message Complexity

We can reduce the total number of messages exchanged by the
algorithm as follows:

The processes can identify the channel from which they
received a search message.
The processes do not send search towards those channels.

In the example, messages are reduced to 10 (i.e., 18 less).

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 12 / 29

General Synchronous Networks Synchronous Networks with Failures

Message Broadcast

Message Broadcast

The algorithm can easily be augmented to implement message
broadcast.

A process has a message m that it wants to communicate to
all of the processes in the network.
It initiates an execution of SynchBFS with itself as the root.
Piggybacks message m on the search message in round 1.
Other processes continue to piggyback m on all their search
messages as well.
Since the tree eventually spans all the nodes, message m is
eventually delivered to all the processes.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 13 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Convergecast

Message convergecast is the inverse of a broadcast in a
message-passing system (see Flooding) – instead of a message
propagating down from a single root to all nodes, data is collected
from outlying nodes through a direct spanning tree to the root.
Typically some function is applied to the incoming data at each
node to summarize it, with the goal being that eventually the root
obtains this function of all the data in the entire system.
(Examples would be counting all the nodes or taking an average of
input values at all the nodes.)

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 14 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Child Pointers

In order to use SyncBFS for message broadcast it is required that
each process learn not only who its parent in the tree is, but also
who all of its children are.

If bidirectional communication is allowed between all pairs of
neighbors, i.e., the network is undirected, this is simple.
Each unmarked process, upon receiving the first search
message, it sends a message parent to the process from which
the message was received.

When SynchBFS’ terminates, all processes are aware of their
“children” processes.

The modified algorithm SynchBFS’ requires diam(G ) + 2 rounds
and uses m + n − 1 messages.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 15 / 29



General Synchronous Networks Synchronous Networks with Failures

Convergecast

Termination

How can the source process i0 tell when the construction of the
tree has completed ?

The diameter of the network is know known, neither the total
number of processes n.

If each search message is answered with either a parent or
non-parent message, then after any process has received responses
from all of its search messages, it knows who all its children are
and knows that they have all been marked.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 16 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Termination

How can the source process i0 tell when the construction of the
tree has completed ?

Starting from the leaves of the BFS tree, notification of completion
can be “fanned in” to the source:

each process can send notification of completion to its parent
in the tree as soon as

1 it has received responses for all its search messages (so that it
knows who its children are and knows that they have been
marked)

2 it has received notification of completion from all its children.

This type of procedure is called a convergecast.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 16 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

Initial Network

The network contains 9 processes, 14
channels

Process 1 initiates the execution.

Process 1 is marked.

All other processes are not marked.

Initial State

1

5

2

6

3

7

9

4

8

1

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors. 1st Round – 1st Step

1

5

2

6

3

7

9

4

8

1

s

s

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29



General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

1st Round – 1st Step

Process 1 sends search to its neighbors.

1st Round – 2nd Step

Processes 2, 5 are marked.

Processes 2, 5 select 1 as parent
process.

1st Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

1

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors. 2nd Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

1

s

s

s

s
s

s

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

2nd Round – 1st Step Processes 2, 5

send search to all neighbors.

2nd Round – 2nd Step

Process 1 ignores all search messages
received.

Processes 3, 4, 7, 8, 9 are marked.

Processes 3, 8 set process 5 as parent
process.

Processes 4, 7 set process 2 as parent
process.

Process 9 chooses (randomly) process 2 as

parent process.

2nd Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

5

21

2

5

2

s

s

s

s

s

s

s

s
s

s
¬p

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29



General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

3rd Round – 1st Step

Processes 3, 4, 7, 8, 9 send search to
all neighbors.

3rd Round – 2nd Step

Processes 2, 3, 4, 5, 7, 8, 9 ignore the
search messages received.

Process 6 is marked.

Process 6 chooses (randomly) process 8
as parent process.

3rd Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

4th Round – 1st Step
Process 3 sends non-parent to 8

Process 8 sends non-parent to 3

Process 8 sends non-parent to 9

Process 9 sends non-parent to 4

Process 4 sends non-parent to 7

Process 7 sends non-parent to 4

Process 6 sends non-parent to 4

Process 6 “” 8

3rd Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

p

¬p

¬p

¬p

¬p ¬p

¬p

¬p

¬p

¬p

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

4th Round – 1st Step
Process 3 sends non-parent to 8

Process 8 sends non-parent to 3

Process 8 sends non-parent to 9

Process 9 sends non-parent to 4

Process 4 sends non-parent to 7

Process 7 sends non-parent to 4

Process 6 sends non-parent to 4

Process 6 “” 8

4th Round – 2nd Step

Process 8 detects the completion of the
sub-tree of 6

3rd Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

5th Round – 1st Step Processes 3, 8

send parent message to 5

Processes 4, 7, 9 send parent message
to 2

5th Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

p

p

p p

p

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29



General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

5th Round – 1st Step Processes 3, 8

send parent message to 5

Processes 4, 7, 9 send parent message
to 2

5th Round – 2nd Step

Process 5 detects the completion of the
sub-trees of 3, 8

Process 2 detects the completion of the
sub-trees of 4, 7, 9

5th Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

6th Round – 1st Step Processes 2, 5

send parent message to 1

6th Round – 1st Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

p

p

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

6th Round – 1st Step Processes 2, 5

send parent message to 1

6th Round – 2nd Step

Process 1 detects the completion of the
sub-trees of 2, 5
Process 1 terminates

6th Round – 2nd Step

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29

General Synchronous Networks Synchronous Networks with Failures

Convergecast

Example of Execution for SyncBFSc Algorithm

Final Step

Breadth-first directed spanning tree is
constructed.

Total number of rounds: 6

Total number of messages: 36

Final State

1

5

2

6

3

7

9

4

8

1 1

5

21

8

2

5

2

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 17 / 29



General Synchronous Networks Synchronous Networks with Failures

Stabilization

Robust Algorithms

We have studied the correctness of algorithms when
communication channels and/or processes are reliable.
We have also studied the correctness of the algorithms

When process fail,
Communication channels are faulty.

We have also studied fully dynamic networks.
The algorithms achieve robustness

Trying to maintain a “stable” network state.
They achieve this by making certain assumptions (Consensus,
number of failures, violation of properties, rate of changes).
End up being too complex (Two Phase and Three Phase
Commit)

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 18 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Self-Stabilizing Algorithms

Self-stabilizing algorithms achieve robustness via a
fundamentally different approach.
Robust algorithms tend to be pessimistic

Assume that all kinds of failures that may occur, will
eventually occur.
Every round they check certain properties in order to
guarantee correctness.
For each failure they follow a specific, specialized rule to
recover.
They try to keep the system under a “correct” operating
condition.

Stabilizing algorithms are by nature more optimistic

Failures are transient.
Processes may fail or act abnormally from time to time.
Correct processes may at some point behave inconsistently.
Yet, at some point, they will recover.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 19 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Self-Stabilizing Algorithms

Main idea

The system is designed to converge within finite number of
steps from any (unstable) state to a desired (stable) state.
. . . the system will eventually self-stabilize.

We accept that a correct state is eventually reached.

We abandon failure models and bounds on failure rates.
The combination and type of faults cannot be totally
anticipated in on-going systems.

We assume that all processes operate properly, but the
execution may fail arbitrarily during a transient failure.

We do not monitor failed processes.
We assume that no further failures occur.
We let the processes manage themselves locally by following
simple rules.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 19 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Self-Stabilizing Algorithms

We do not need to examine faulty processes and the history of
the system.
We assume that the initial state of the algorithm is one where
a failure has occurred.
Then the algorithm is self-stabilizing (or stabilizing) if
eventually it behaves correctly.

That is, eventually it adheres to the specifications,
independently of its initial state.

The concept of stabilization was introduced by Dijkstra

Limited progress until the end of the 80s.
Most significant findings during the 90s when the approach
became widely known.
Recently, attracted even more interest.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 19 / 29



General Synchronous Networks Synchronous Networks with Failures

Stabilization

Definition

Stabilizing algorithms are models as state-transition systems
without initial state.
For each pair of states κ, κ′, κ κ′ an action ε exists if
(κ, ε, κ′) ∈ trans(A)
An algorithm A stabilizes to specification Π if there is a
subset of states L ⊆ states(A) such that

For every execution that starts in L it complies with Π
(correctness)
Every possible execution includes a state in L (convergence)

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 20 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Proving Stabilization

In order to prove that an algorithm is a stabilizing algorithm
we use the notion of “legal” or stable execution.
Initially we assume that the algorithm starts from a state in L
Then we identify a potential function (convergence function).

Execution Example

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 21 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Proving Stabilization

In order to prove that an algorithm is a stabilizing algorithm
we use the notion of “legal” or stable execution.
Initially we assume that the algorithm starts from a state in L
Then we identify a potential function (convergence function).

Execution Example

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 21 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Proving Stabilization

In order to prove that an algorithm is a stabilizing algorithm
we use the notion of “legal” or stable execution.
Initially we assume that the algorithm starts from a state in L
Then we identify a potential function (convergence function).

Execution Example

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 21 / 29



General Synchronous Networks Synchronous Networks with Failures

Stabilization

Proving Stabilization

In order to prove that an algorithm is a stabilizing algorithm
we use the notion of “legal” or stable execution.
Initially we assume that the algorithm starts from a state in L
Then we identify a potential function (convergence function).

Execution Example

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 21 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Proving Stabilization

In order to prove that an algorithm is a stabilizing algorithm
we use the notion of “legal” or stable execution.
Initially we assume that the algorithm starts from a state in L
Then we identify a potential function (convergence function).

Execution Example

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 21 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Proving Stabilization

In order to prove that an algorithm is a stabilizing algorithm
we use the notion of “legal” or stable execution.
Initially we assume that the algorithm starts from a state in L
Then we identify a potential function (convergence function).

Execution Example

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 21 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Proving Stabilization

In order to prove that an algorithm is a stabilizing algorithm
we use the notion of “legal” or stable execution.
Initially we assume that the algorithm starts from a state in L
Then we identify a potential function (convergence function).

Execution Example

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 21 / 29



General Synchronous Networks Synchronous Networks with Failures

Stabilization

Properties of Stabilizing Algorithms

The benefits of stabilizing algorithms in contrast to robust
algorithms

1 Fault Tolerance – they provide a complete and automatic
tolerance to all kinds of transient failures since they eventually
converge to a steady state.

2 Lack of Initialization – there is no need to initialize the
algorithm at a predefined stated, the eventual behavior of the
system is guaranteed.

3 Dynamic Topology – If a change occurs, the algorithm will
eventually converge to a new working state.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 22 / 29

General Synchronous Networks Synchronous Networks with Failures

Stabilization

Properties of Stabilizing Algorithms

The drawbacks of stabilizing algorithms in contrast to robust
algorithms

1 Inconsistent State – until convergence is achieved, the
algorithm may produce inconsistent output.

2 Increased Message Complexity – due to the continuous
exchange of messages, stabilizing algorithms tend to be less
efficient.

3 Termination Condition – it is impossible to identify if the
algorithm has reached a final stated, thus the processes are
usually unaware if the correct output has been produced.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 22 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Breadth-First directed spanning tree

A directed spanning tree of G with root i is breadth-first provided
that each node at distance d from i in G appears at depth d in the
tree.

A self-stabilizing algorithm must guarantee

In each unstable state, at least one process is active.
In each stable state, no process is active, i.e., the system has
reached a deadlock.
For all initial states and all possible executions, the system
guarantees convergence to a stable state in finite number of
steps.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 23 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

StabBFS Algorithm

Each process u maintains a variable pu for storing its parent in the tree

and variable du for its height from u0 (based on the current state),

initially if u 6= u0 : pu =∞, du =∞ otherwise u = u0 : pu = u0, du = 0.

In each round, u transmits du to its neighbors. Checks values received

and if it listens a message from v where dv < du, it sets du = dv + 1 and

pu = v .

Process u0 is the root of the tree – this is known to the
processes.
Let n the size of the network.
Let d(u) the distance of u0 from u in G .

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 24 / 29



General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Definitions

For height of u it holds that 0 ≤ d(u) ≤ n − 1.
In an unstable state, each process apart from u0 may have any
height 0 . . . n − 1.
In an unstable state, each process apart from u0 may assume
any other process as its parent in the tree (except from u0).
For each process we set the state Su as follows

Su = {v : v = nbrsu ∧ du = mini∈nbrsu{di}}

Su includes all the neighbors of u with minimum height – it
may include more than one process but it cannot be empty.
All processes in Su have the same height, d(Su).

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 25 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Stable State

We define as stable state each state where the following
global predicate is true

∀u 6= u0 : du = d (Su) + 1 ∧ pu ∈ Su

The term pu ∈ Su denotes that the parent variable of each
process u points to a neighboring node of u.

Lemma

For each connected symmetric graph, the above stable state
defines a Breadth-First directed spanning tree rooted at u0.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 26 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Stable State

The root of the tree u0 has fixed height 0.

Thus, in a stable state, all neighboring nodes of u0 must have
height 1.

Therefore, all neighboring nodes of these nodes must have
height 2 . . .

and their parent variable points to one of the nodes with
height 1.

Following this argument for all the nodes of the network, it is
clear that the parent and height variables will consisute a
directed spanning tree rooted at u0.

The goal of the algorithm is to converge to such a stable state.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 26 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Main Idea

When the system reaches an unstable state, at least one node
will identify this and become active in order to start taking
corrective actions.

The algorithm enforces a uniform rule for all processes apart
from the root.

The rule involves two parts:

1 Evaluate a local predicate based on the height of the node and
the height of its neighbors.

2 Change the parent node so that the local state becomes stable.

u 6= u0 ∧ d (Su) 6= n − 1 ∧ {du 6= d (Su) + 1 ∨ pu 6∈ Su}
=⇒ du = d (Su) + 1; pu = v , v ∈ Su

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 27 / 29



General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29



General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29

General Synchronous Networks Synchronous Networks with Failures

Self-Stabilizing Data Structures

Self-Stabilizing Tree Construction

Processes maintain a variable parent
set to ∅ and height their hop-distance
from the controlling process, set to ∅.

The Controlling process sets height to
0 and broadcasts the search message
with a counter set to 0.

Processes receiving the search
message set height to the value of the
counter +1.

Periodically processes broadcast their
height and parent.

Processes change parent if they
discover a neighbor closer to the
controlling process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 28 / 29



General Synchronous Networks Synchronous Networks with Failures

Correctness

Proving Correctness

Our goal is to prove that the three properties hold

In each unstable state, at least one process is taking a
corrective action.
In each stable state, no process is active.
For all initial states and all possible executions, the algorithm
guarantees convergence to a stable state in finite number of
rounds.

Lemma

In a stable state, no process is active

Holds due to the rule.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 29 / 29

General Synchronous Networks Synchronous Networks with Failures

Correctness

Proving Correctness

Lemma

In each unstable state at least one process is active, that is, in
each unstable state it is guaranteed that some process will execute
a corrective action.

We prove the lemma by contradiction.
Let an unstable state where no process is active.
Then a process u 6= u0 exists for which du 6= d (Su) + 1 or
pu 6∈ Su or both.
Then Su must have height n − 1 otherwise u would be active
due to the rule.
Let assume that all neighboring processes of u0 (that have
height 0)

These are the processes with height 1

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 29 / 29

General Synchronous Networks Synchronous Networks with Failures

Correctness

Proving Correctness

Then let assume all neighboring processes of these processes

These are the processes with height 2

Continuing in the same way, we examine all the process of the
network

In the wost case, process v may have height n − 1
. . . the network is a chain/line of length n − 1.

Even in this case, Su is strictly smaller than n − 1.
Thus, when no process is active, we cannot identify any
process u that holds the initial assumption.
We have proved that the lemma holds.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 29 / 29

General Synchronous Networks Synchronous Networks with Failures

Correctness

Proving Correctness

Lemma

Regardless of the initial state, and regardless of the way processes
are activated, the algorithm will always reach a stable state in
finite number of steps.

Since the number of states is finite, it is enough to show that
starting from any initially unstable state, the system cannot
re-enter the same initial state.
Let x and y two identical states and x 6= y

State x is the state reached after x actions, starting from an
initially unstable state.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 29 / 29



General Synchronous Networks Synchronous Networks with Failures

Correctness

Proving Correctness

We assume that in x , process u (and maybe other nodes as
well) is active

Thus u will take the x + 1-th action

We examine the possible actions that process u may execute
1 u reduces its height by k ≥ 1
2 u increases its height by k ≥ 1

In both cases we follow the same arguments.
Let’s examine the 1st case.
The has to be a process v ∈ Su neighboring u such that
du − k − 1, that forced u to take an action.
To be able to reach state y(= state x), d(Su) must increase
by k.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 29 / 29

General Synchronous Networks Synchronous Networks with Failures

Correctness

Proving Correctness

Thus at least one neighbor of u, let i , will increase its height,
di by k .
For this to happen there must be a process j ∈ Si with height
dj = di + k − 1 that forces i to take an action.
Let assume a j such that j ∈ Si and d(Si ) = di + k − 1 and
let d ′

i is the new value of di (d ′
i = di + k).

However, now, the height of i differs from the height it had at
state x (and thus in state y where we wish to reach)
Thus, a neighboring node of i must re-instate it to the
previous height (that is re-change d(Si ))

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 29 / 29

General Synchronous Networks Synchronous Networks with Failures

Correctness

Proving Correctness

Repeating the same argument, there is always a node that
needs to change its height so that it fixes the heights of those
nodes that differ from state y .

Therefore, we cannot reach the same state.

Ioannis Chatzigiannakis Pervasive Systems Lecture 11 29 / 29


