
Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Pervasive Systems

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 19:
Wiselib: Algorithmic Library for WSN

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 1 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Distributed Algorithm Engineering

In Theoretical Computer Science, researchers tend to design
an algorithm in an abstract way.
An algorithm should be able to be used in many different
situations.
It is up to the developer to decide the way it should be turned
into code for a real system.
Going from theory into practice is hard – requires
programming skills in addition to knowledge in algorithm
theory.
The developer also finds many limitations due to the given
hardware and software specifications.
In WSN this is further augmented due to the extremely
limited resources and also due to the heterogeneous nature
(both in terms of hardware and software).

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 2 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Implementing Algorithms for Wireless Sensor Networks

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 3 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Implementing Algorithms for Wireless Sensor Networks

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 3 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Implementing Algorithms for Wireless Sensor Networks

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 3 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Implementing Algorithms for Wireless Sensor Networks

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 3 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Implementing Algorithms for Wireless Sensor Networks

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 3 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Wiselib: A Generic Algorithm Library for WSN

Algorithm library for heterogeneous sensor networks
Easy integration into available systems

Sensor Node OSs such as iSense, Contiki, TinyOS
Simulation environments, for example Shawn

Hide complexity of underlying architecture
Flexible architecture for algorithm development
Algorithms are interchangeable
Possible to create layered structure of algorithms
Allow for cross-layer design

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 4 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Basic Design Idea

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 5 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Basic Design Idea

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 5 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Basic Design Idea

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 5 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks

Supported Platforms

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 6 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The Radio Facet

Radio Facet

Concept

1 c o n c e p t R a d i o F a c e t {
2 // . . .
3
4 t y p e d e f . . . b l o c k d a t a t ;
5 t y p e d e f . . . s i z e t ;
6 t y p e d e f . . . m e s s a g e i d t ;
7
8 enum S p e c i a l N o d e I d s {
9 BROADCAST ADDRESS = . . . ,

10 NULL NODE ID = . . .
11 } ;
12 enum R e s t r i c t i o n s {
13 MAX MESSAGE LENGTH = . . .
14 } ;
15
16 i n t e n a b l e r a d i o () ;
17 i n t d i s a b l e r a d i o () ;
18 i n t send (
19 n o d e i d t r e c e i v e r ,
20 s i z e t l e n , b l o c k d a t a t *

data
21) ;
22 n o d e i d t i d () ;
23 i n t r e g r e c v c a l l b a c k (. . .) ;
24 i n t u n r e g r e c v c a l l b a c k (i n t i d x)

;
25 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 7 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The Radio Facet

Radio Facet

Concept

1 c o n c e p t R a d i o F a c e t {
2 // . . .
3
4 t y p e d e f . . . b l o c k d a t a t ;
5 t y p e d e f . . . s i z e t ;
6 t y p e d e f . . . m e s s a g e i d t ;
7
8 enum S p e c i a l N o d e I d s {
9 BROADCAST ADDRESS = . . . ,

10 NULL NODE ID = . . .
11 } ;
12 enum R e s t r i c t i o n s {
13 MAX MESSAGE LENGTH = . . .
14 } ;
15
16 i n t e n a b l e r a d i o () ;
17 i n t d i s a b l e r a d i o () ;
18 i n t send (
19 n o d e i d t r e c e i v e r ,
20 s i z e t l e n , b l o c k d a t a t *

data
21) ;
22 n o d e i d t i d () ;
23 i n t r e g r e c v c a l l b a c k (. . .) ;
24 i n t u n r e g r e c v c a l l b a c k (i n t i d x)

;
25 }

Implementations

Radio models for all platforms

Virtual and encrypting radio

Routing algorithms

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 7 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The Radio Facet

Radio Facet

Concept

1 c o n c e p t R a d i o F a c e t {
2 // . . .
3
4 t y p e d e f . . . b l o c k d a t a t ;
5 t y p e d e f . . . s i z e t ;
6 t y p e d e f . . . m e s s a g e i d t ;
7
8 enum S p e c i a l N o d e I d s {
9 BROADCAST ADDRESS = . . . ,

10 NULL NODE ID = . . .
11 } ;
12 enum R e s t r i c t i o n s {
13 MAX MESSAGE LENGTH = . . .
14 } ;
15
16 i n t e n a b l e r a d i o () ;
17 i n t d i s a b l e r a d i o () ;
18 i n t send (
19 n o d e i d t r e c e i v e r ,
20 s i z e t l e n , b l o c k d a t a t *

data
21) ;
22 n o d e i d t i d () ;
23 i n t r e g r e c v c a l l b a c k (. . .) ;
24 i n t u n r e g r e c v c a l l b a c k (i n t i d x)

;
25 }

Usage example

1 c l a s s MyApp {
2 v o i d i n i t (Os : : AppMainParameter& amp) {
3 r a d i o = &w i s e l i b : : F a c e t P r o v i d e r <...>(

amp) ;
4
5 r a d i o −>e n a b l e r a d i o () ;
6 r a d i o −>r e g r e c v c a l l b a c k <MyApp , &

MyApp : : recv >(t h i s) ;
7
8 c h a r *m = ” H e l l o World ” ;
9 r a d i o −>send (

10 Os : : Radio : : BROADCAST ADDRESS,
11 s t r l e n (m) , (Os : : Radio : : b l o c k d a t a t

*) (m)
12) ;
13 }
14
15 v o i d r e c v (Os : : Radio : : n o d e i d t from ,
16 Os : : Radio : : s i z e t s i z e ,
17 Os : : Radio : : b l o c k d a t a t *buf) {
18 debug −>debug (” got %s from %d” , from ,

buf) ;
19 }
20 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 7 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The Radio Facet

Problems when Sending Messages

How to pass a message when network is heterogeneous?
Different bit widths
Alignment issues
Byte order

How to identify own messages?
Radio may be used by multiple algorithms

How to flexibly register a callback?
No virtual inheritance
No C function pointers

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 8 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The Radio Facet

Problems when Sending Messages

How to pass a message when network is heterogeneous?
Different bit widths
Alignment issues
Byte order

How to identify own messages?
Radio may be used by multiple algorithms

How to flexibly register a callback?
No virtual inheritance
No C function pointers

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 8 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The Radio Facet

Problems when Sending Messages

How to pass a message when network is heterogeneous?
Different bit widths
Alignment issues
Byte order

How to identify own messages?
Radio may be used by multiple algorithms

How to flexibly register a callback?
No virtual inheritance
No C function pointers

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 8 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message Delivery

Heterogeneity

Bit Width

int

Jennic

MSP430

Write

Byte Order

Write an uint32_t

Big Endian

Little Endian

A

B

C D

A

B

CD

Alignment

uint16_t

Shawn (Desktop)

MSP430

at odd address

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 9 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message Delivery

The “Double Problem”

IEEE Standard for Floating-Point Arithmetic (IEEE 754)
Single precision: 4 bytes
Double precision: 8 bytes

E.g., msp430-g++ (default)
Single precision: 4 bytes
Double precision: 4 bytes

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 10 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message Delivery

Solution

Make use of fixed size data types
Include header stdint.h
Use data types uint16 t, int32 t, ...

Provide “clever” read/write methods
Take care of platform differences
Do the right thing for all datatype/platform combinations

Template specialization
Only needed conversions will be compiled
Easy to add new conversion rules for new platforms/datatypes

⇒ Developer does not have to worry about platform details!

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 11 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message Delivery

Serialization

Read/write an uint16 t

1 b l o c k d a t a t b u f f e r [. . .] ;
2
3 u i n t 1 6 t r e a d v a l u e () {
4 r e t u r n read<OsModel , b l o c k d a t a t , u i n t 1 6 t >(b u f f e r) ;
5 }
6
7 OsModel : : s i z e t w r i t e v a l u e (u i n t 1 6 t v a l u e) {
8 r e t u r n w r i t e<OsModel , b l o c k d a t a t , u i n t 1 6 t >(b u f f e r , v a l u e) ;
9 }

read and write care for heterogeneity

Template specialization for each specific platforms (possible)

Where not specialized, use default implementation

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 12 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message Delivery

Templated Serialization provided by the Wiselib
1 template<typename OsModel P , typename BlockData P , typename Type P>
2 i n l i n e Type P r e a d (BlockData P * t a r g e t)
3 {
4 r e t u r n S e r i a l i z a t i o n <OsModel P , OsModel P : : e n d i a n n e s s , BlockData P , Type P>
5 : : r e a d (t a r g e t) ;
6 }
7
8 template<typename OsModel P , typename BlockData P , typename Type P>
9 i n l i n e v o i d r e a d (BlockData P * t a r g e t , Type P& v a l u e)

10 {
11 v a l u e = S e r i a l i z a t i o n <OsModel P , OsModel P : : e n d i a n n e s s , BlockData P , Type P>
12 : : r e a d (t a r g e t) ;
13 }
14
15 template<typename OsModel P , typename BlockData P , typename Type P>
16 i n l i n e typename OsModel P : : s i z e t w r i t e (BlockData P * t a r g e t , Type P& v a l u e)
17 {
18 r e t u r n S e r i a l i z a t i o n <OsModel P , OsModel P : : e n d i a n n e s s , BlockData P , Type P>
19 : : w r i t e (t a r g e t , v a l u e) ;
20 }

Basic functions for read() and write()

Use Serialization class: Passing OS, endianness, block data,
type
Template specialization: Automatically generate platform
dependent code

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 13 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message Delivery

Example: Generic Implementation and Specialization

Generic implementation: Used by default
1 t e m p l a t e <typename OsModel P , End ianness , typename BlockData P , typename

Type P>
2 s t r u c t S e r i a l i z a t i o n
3 {
4 s t a t i c i n l i n e s i z e t w r i t e (BlockData * t a r g e t , Type& v a l u e)
5 {
6 f o r (u n s i g n e d i n t i = 0 ; i < s i z e o f (Type) ; i++)
7 t a r g e t [s i z e o f (Type) − 1 − i] = * ((BlockData *)&v a l u e + i) ;
8 r e t u r n s i z e o f (Type) ;
9 }

10 . . .

Specialization for big endian (default for all data types)
1 t e m p l a t e <typename OsModel P , typename BlockData P , typename Type P>
2 s t r u c t S e r i a l i z a t i o n <OsModel P , WISELIB BIG ENDIAN , BlockData P , Type P>
3 {
4 s t a t i c i n l i n e s i z e t w r i t e (BlockData * t a r g e t , Type& v a l u e)
5 {
6 f o r (u n s i g n e d i n t i = 0 ; i < s i z e o f (Type) ; i++)
7 t a r g e t [i] = * ((BlockData *)&v a l u e + i) ;
8 r e t u r n s i z e o f (Type) ;
9 }

10 . . .

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 14 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message Delivery

Example: Floating Point Specialization

Template specialization for double values
1 t e m p l a t e <typename OsModel P ,
2 typename BlockData P>
3 s t r u c t S e r i a l i z a t i o n <OsModel P , WISELIB LITTLE ENDIAN , BlockData P ,

double>
4 {
5 p u b l i c :
6 s t a t i c i n l i n e d o u b l e r e a d (BlockData * t a r g e t)
7 {
8 r e t u r n F p S e r i a l i z a t i o n <OsModel , WISELIB LITTLE ENDIAN , BlockData ,

double ,
9 s i z e o f (d o u b l e) >:: r e a d (t a r g e t) ;

10 }
11
12 s t a t i c i n l i n e s i z e t w r i t e (BlockData * t a r g e t , d o u b l e& v a l u e)
13 {
14 r e t u r n F p S e r i a l i z a t i o n <OsModel , WISELIB LITTLE ENDIAN , BlockData ,

double ,
15 s i z e o f (d o u b l e) >:: w r i t e (t a r g e t , v a l u e) ;
16 }
17 } ;

Automatically adapt to platform via
sizeof(double)

as template argument
FpSerialization: Same principle as Serialization class

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 15 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message IDs

Message Identification

Very simple concept for messages:

Each message has an identifier in the first byte(s)

Message id type is defined in radio

Always use Radio::message id t

All radio facets are adjusted for same message id t

Currently uint8 t, may change to uint16 t soon

See
www.wiselib.org/wiki/design/messages/id_

allocation

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 16 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message IDs

Accessing Message IDs

Make use of serialization, also in algorithms!
1 #i n c l u d e ” u t i l / s e r i a l i z a t i o n / s i m p l e t y p e s . h”
2
3 v o i d
4 MyAlgorithm<OsModel P , Radio P , Debug P > : :
5 r e c e i v e (n o d e i d t from , s i z e t l e n , b l o c k d a t a t *data)
6 {
7 m e s s a g e i d t msg id = read<OsModel , b l o c k d a t a t , m e s s a g e i d t >(data)

;
8 i f (msg id == MyMessageId)
9 { . . . }

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 17 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message IDs

Generic Message Composition

In own messages, make use of serialization and type
definitions
Define buffer array as only data member
1 template<typename OsModel P , typename Radio P>
2 c l a s s MyMessage {
3 m e s s a g e i d t msg id ()
4 { r e t u r n read<OsModel , b l o c k d a t a t , m e s s a g e i d t >(b u f f e r) ; } ;
5
6 v o i d s e t m s g i d (m e s s a g e i d t i d)
7 { w r i t e<OsModel , b l o c k d a t a t , m e s s a g e i d t >(b u f f e r , i d) ; }
8
9 n o d e i d t s o u r c e ()

10 { r e t u r n read<OsModel , b l o c k d a t a t , n o d e i d t >(b u f f e r + SOURCE POS) ; }
11 . . .
12 s i z e t b u f f e r s i z e () { r e t u r n /* s i z e o f message */ ; }
13 . . .
14 enum d a t a p o s i t i o n s {
15 MSG ID POS = 0 ,
16 SOURCE POS = s i z e o f (m e s s a g e i d t) ,
17 NEXT POS = SOURCE POS + s i z e o f (n o d e i d t) ,
18 . . . } ;
19
20 b l o c k d a t a t b u f f e r [MAX MESSAGE LENGTH] ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 18 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Message IDs

Generic Message Composition

When sending message over radio, cast message to block
data:
1 r a d i o () . send (d e s t i n a t i o n , message . b u f f e r s i z e () , (b l o c k d a t a t *)&message

) ;

On reception, cast block data to message:
1 MyMessage *message = (MyMessage *) b u f f e r ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 19 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The pSTL

Problems with STL

STL uses all kinds of C++ features like...
new/delete
RTTI
Exceptions

⇒ Bad, some platforms do not support those!
That’s even true for other “slim” versions like the uSTL
(http://ustl.sourceforge.net)

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 20 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The pSTL

Solution: pSTL

“pico” version of the STL
implements a subset of the STL
but usable on limited platforms

does not require new/delete, exceptions, RTTI
not even a dynamic memory
resource-efficient implementation

replace pSTL with “normal” STL any time if you need
something pSTL doesn’t provide

→ Almost full STL power even on limited nodes
→ Code can be easily ported between STL and pSTL

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 21 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The pSTL

pSTL Design

STL-Code works with small modifications
But don’t use const, new, etc...
(code size and portability)
Only ++iter supported, not iter++
(easier to maintain)
Currently only statically sized containers available (will change
soon)
(do not require dynamic memory)
Some details (like allocator passing) are different
(because allocation is different)

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 22 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The pSTL

Implementations

Containers

vector static

list static

map static vector

priority queue

queue static

set static

pair

Algorithms

for each

find / search

min / max

copy

heap operations

sorting

etc...

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 23 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The pSTL

Example: MapStaticVector

1 #i n c l u d e <i o s t r e a m>
2
3 #i n c l u d e ” u t i l / p s t l / m a p s t a t i c v e c t o r . h”
4 #i n c l u d e ” e x t e r n a l i n t e r f a c e / pc / p c o s m o d e l . h”
5
6 t y p e d e f w i s e l i b : : PCOsModel Os ;
7 t y p e d e f w i s e l i b : : MapStat icVector<Os , i n t , c o n s t c h a r * , 5> map t ;
8
9 i n t main (i n t argc , c h a r** a r g v) {

10 map t map ;
11
12 map [1] = ” f i r s t ” ;
13 map [9 8 7 6] = ” o v e r 9000 ” ;
14 map [4 2] = ” t h e answer ” ;
15 map . e r a s e (9876) ;
16 map [8 1 5] = ” f l i g h t no . ” ;
17
18 map t : : i t e r a t o r i t e r ;
19 f o r (i t e r = map . b e g i n () ; i t e r != map . end () ; ++i t e r) {
20 s t d : : cout << i t e r−>f i r s t << ” => ” << i t e r−>second << ”\n” ;
21 }
22 r e t u r n 0 ;
23 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 24 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The need for Scalable Network Structures

Current off-the-shelf WSN technologies:
1 allow short range message exchanges.
2 employ flat network organization structures for message

exchanges, data aggregation and actuators operation.
3 typically allow the operation of a few dozens of nodes.

Many of the proposed applications assume large node
populations densely deployed over sizable areas.

City Scale deployments: CitySense, SmartSantander . . .

It is important that future WSN have scalable network
structures that

achieve appropriate levels of organization and integration.
are achieved seamlessly and with appropriate levels of flexibility.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 25 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

The need for Adaptation

A large variety of approaches have been proposed for grouping
nodes in order to achieve network scalability.
Some have been proposed as stand alone methods, others
incorporated as sub protocols in larger solutions.
Unfortunately, none of them has been widely adopted by the
community

1 extremely few software implementations for real WSN
2 cluster formations remain static throughout the execution of

the networks

Technology expects future WSN to be dependable and
adaptive to:

1 “external changes” that affect the topology of the network
(e.g., due to node failures).

2 “internal changes” requested by the application (e.g., to
reduce cluster sizes).

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 26 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Our Approach

Instead of trying to cope with all possible types of internal or
external events we follow the approach of self-organization
We propose an self-organizing algorithm that is verified to be
correct using theoretical analysis
We implement our solution by following a component-based
design.
We totally avoid implementing our algorithm as a monolithic,
stand-alone piece of code.
We conduct a thorough evaluation using an experimental
testbed environment.
For all cases, our results indicate that our approach adapts to
the external and internal changes.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 27 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Self-Organizing Algorithm

Self-Organizing Algorithm Overview

The algorithm partitions the node of the network into small
clusters that are then merged to form bigger clusters and so
on.
Nodes continuously monitor the local topology.

If they do not detect any cluster, they take the initiative to
create a new one.
If one or more clusters exist, they join one of these using some
very simple criteria.

The network parameter k is used to control the cluster size:

Set by the network operator and can be modified during the
execution of the protocol.
The protocol adapts by adjusting the cluster size so that they
have a diamater of 2× k.
The adaptation to the new size requires O(k) execution
rounds.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 28 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Self-Organizing Algorithm

Network Initialization

Our algorithm follows the self-stabilization approach, so we do
not assume any initialization phase.
It is capable of starting from any configuration where the
nodes of the network are set to any arbitrary state.

some nodes may consider themselves as cluster heads,
others may consider as members of non-existing clusters, etc..

Regardless of this initial arbitrary state, within a bounded
number of steps, our algorithms converges to a stable
configuration

i.e., a configuration where all nodes of the network participate
in a valid cluster of k − hop diameter

This is done regardless of the way that the devices are
positioned in the network area.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 29 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Self-Organizing Algorithm

Self-Organizing Neighborhood Discovery

An important aspect is the ability to detect the current
topology of the network.
Simple approach: each node periodically broadcast beacon
messages that include its unique id.
Problem: Communication is carried out via a wireless channel
– its quality varies over time.
Solution:

1 Take into account the Link Quality Indicators (LQI) provided
by the MAC layer for each received message beacon

Consider beacon messages with LQI above a certain threshold.
Drop messages below another LQI threshold.

2 Allow a node to miss a number of beacons within a given
period of time before removing it (called the timeout period)

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 30 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Self-Organizing Algorithm

Self-Organizing Leader Election

Each node u maintains an internal list with all the leader
nodes that are within k − hop distance.
The list is continuously broadcast to all neighboring nodes.
A node u that has an empty list nominates itself as a local
leader and inserts {idu, distu = 0, null}.
When a node v that receives a list from a neighboring node u:

1 for each entry {idu, distu = 0, null} it adds {idu, distu = 1, v}
2 for each entry {idx , distx , u} it adds {idx , distx + 1, v}
3 It drops duplication entries.
4 It merges entries with the sane id using the entry with the

minimum id and with the minimal dist.
5 Deletes entries with dist > k.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 31 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Self-Organizing Algorithm

Self-Organizing Grouping (1)

As soon as a node nominates itself as a local leader it enters a
waiting period of O(k) period of time.
It waits for the self-stabilizing update algorithm to collect the
other identifiers and notify for the leader identity all nearby
nodes within at most O(k) rounds.
If there does not exist a node u with distance less than k from
v , with lower id than v , then v is a stable leader and initiates
the cluster construction phase.
If another node u is identified (with lower id) then v exits the
waiting period and becomes passive.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 32 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Self-Organizing Algorithm

Self-Organizing Grouping (2)

Next, each active local leader starts a breadth-first search to
identify all nearby nodes and invite them in its cluster.
Nodes receiving the search message of local leader u respond
by joining the cluster of the leader.
Since each node v may follow a different local leader in its
neighborhood, if v decides to join the cluster formed by node
u it sends back to u a response message.
This process requires an additional O(k) rounds.

The algorithm is self-organizing and the convergence time is O(k)
rounds.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 33 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Component-based Implementation

Basic components and relation with Wiselib

Cluster-head Decision (CHD). Responsible for the leader
election (and re-election).
Join Decision (JD). Methodology by which nodes decide to
join cluster-heads.
Iterator (IT). Categorizing and storing information related to
neighboring nodes for other algorithms to be able to use it.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 34 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Component-based Implementation

Core Component

1 CHD is invoked to determine if the node will become a
cluster head or not.

2 If the node is a cluster-head: JD sends JoinRequest
messages to nearby nodes.

3 Upon receiving a Join Request message:
If JD decides to join, a JoinAccept message is sent back,
IT is notified to store the node’s Cluster-head.
If JD decides not to join, a JoinDeny message is sent back.

4 If a JoinDeny message is received, the IT is notified in
order to keep track of which neighbors have joined the cluster
and which have not.

5 When all nodes have been examined the membership tables
are generated by the IT and the process of cluster formation
completes.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 35 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Component-based Implementation

Implementation Details

The Core Component is defined in Wiselib as follows:
1 template<typename OsModel ,
2 typename Radio ,
3 typename Timer ,
4 typename Debug ,
5 typename HeadDec i s ion ,
6 typename J o i n D e c i s i o n ,
7 typename I t e r a t o r >
8 c l a s s CoreComponent {
9 p u b l i c :

10 v o i d i n i t (Radio &, Timer &,Debug&,CHD&,JD&, IT&) ;
11 v o i d e n a b l e (v o i d) ;
12 v o i d d i s a b l e (v o i d) ;
13
14 v o i d s e t p a r a m e t e r s (p a r a m e t e r s t *) ;
15 v o i d f i n d h e a d (v o i d) ;
16
17 template<typename T, v o i d (T : : * TMethod) (u i n t 8 t)>
18 i n t r e g c h a n g e d c a l l b a c k (T* o b j) ;
19
20 n o d e i d t p a r e n t ()
21 c l u s t e r i d t c l u s t e r i d ()
22 b o o l i s c l u s t e r h e a d (v o i d) ;
23 . . .
24 } ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 36 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Component-based Implementation

Implementation Details

The Cluster Head Decision is defined in Wiselib as follows:
1 template<typename Radio , typename Debug>
2 c l a s s C l u s t e r h e a d D e c i s i o n {
3 p u b l i c :
4 v o i d i n i t (Radio& , Debug&) ;
5 v o i d e n a b l e (v o i d) ;
6 v o i d d i s a b l e (v o i d) ;
7
8 v o i d s e t p a r a m e t e r s (p a r a m e t e r s t *) ;
9 b o o l i s c l u s t e r h e a d (v o i d) ;

10 b o o l c a l c u l a t e h e a d () ;
11 } ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 37 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Component-based Implementation

Implementation Details

The Join Decision is defined in Wiselib as follows:
1 template<typename Radio , typename Debug>
2 c l a s s J o i n D e c i s i o n {
3 p u b l i c :
4 v o i d i n i t (Radio& , Debug&) ;
5 v o i d e n a b l e (v o i d) ;
6 v o i d d i s a b l e (v o i d) ;
7
8 i n t hops () ;
9 v o i d g e t j o i n r e q u e s t p a y l o a d (b l o c k d a t a t *) ;

10 v o i d g e t j o i n a c c e p t p a y l o a d (b l o c k d a t a t *) ;
11 v o i d g e t j o i n d e n y p a y l o a d (b l o c k d a t a t *) ;
12 s i z e t g e t p a y l o a d l e n g t h (i n t) ;
13 b o o l j o i n (u i n t 8 t * , u i n t 8 t) ;
14 } ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 38 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Component-based Implementation

Implementation Details

The Iterator is defined in Wiselib as follows:
1 template<typename OsModel ,
2 typename Radio ,
3 typename Timer ,
4 typename Debug>
5 c l a s s I t e r a t o r {
6 p u b l i c : . . .
7 v o i d i n i t (Radio &, Timer &, Debug&) ;
8 v o i d e n a b l e (v o i d) ;
9 v o i d d i s a b l e (v o i d) ;

10
11 c l u s t e r i d t c l u s t e r i d (v o i d) ;
12 n o d e i d t p a r e n t (v o i d) ;
13 n o d e i d t n e x t n e i g h b o r () ;
14
15 template<typename T, v o i d (T : : * TMethod) (u i n t 8 t)>
16 i n t r e g n e x t c a l l b a c k (T* o b j) ;
17
18 p r i v a t e :
19 v e c t o r t c l u s t e r n e i g h b o r s ;
20 v e c t o r t n o n c l u s t e r n e i g h b o r s ;
21 n o d e i d t p a r e n t ;
22 . . .
23 } ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 39 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Neighbor Discovery

Low Power and Lossy AdHoc Wireless Sensor Networks

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 40 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Neighbor Discovery

Basic Network Operation.
Self maintenance, self configuration.
Base for development of new protocols and algorithms.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 41 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

How ND fits in the bigger picture

Notification mechanism to applications.
Messaging mechanism to send messages to neighbors.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 42 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Different Approaches

Passive Detection,
Hierarchical,
Turn Based,
Beaconing

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 43 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Beaconing

Devices send Beacons every time unit. Reliable but:

energy demanding
constant traffic

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 44 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Starting Point

FixedND

Constant Beaconing

Add to neighborhood after n beacons.

Remove after m missed beacons.

Heavily evaluated in experiments with Clustering, Tracking and
Routing during the previous years.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 45 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

New Neighbor Identification Beacons every 1sec

Execution with 3 Devices

1

2

3

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 46 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

New Neighbor Identification Beacons every 1sec

After 1 Second

1

2

3

hello

hello hello

hello

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 46 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

New Neighbor Identification Beacons every 1sec

After 2 Seconds

1

2

3

hello:2

hello:1,3 hello:1,3

hello:2

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 46 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

New Neighbor Identification Beacons every 1sec

After 3...+ Seconds

1

2

3

hello:2

hello:1,3 hello:1,3

hello:2

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 46 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Why An Adaptive ND?

We propose to adapt the Beaconing rate based on the
Neighborhood changes.

no changes → relaxed discovery
any change → increase beaconing & update information

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 47 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

AdaptiveND

Turned to the concept of “polite gossip” to solve our problems.

AdaptiveND

Beaconing on variable Intervals

Based on the changes of the Neighborhood

Distributed decisions

Same Strategy for accepting and rejecting neighbors

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 48 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Stability is the key

Stability

is a metric defined as the number of Beacons (k) in agreement
with the current neighborhood of the node.

Stable devices relax Beaconing.
Unstable devices send beacons quickly to regain Stability.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 49 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Setting the Stability Threshold

Based on the setup we provide two operation modes:

Fixk : All Devices use the same Stability Threshold (suitable
for mesh or fixed networks).
Averagek : Devices calculate Thresholds based on the size of
their neighborhood (useful for Random Deployments).

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 50 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Neighborhood Discovery

Extra parameters used to refine ND

As in most cases simple beacon exchanges are not enough we
introduced some extra parameters to refine results:

LQI and RSSI for incoming beacons.
Bidirectional link identification.
Add local information to beacons for neighbor feedback.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 51 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

WISEBED: Pan-European Testbed of Wireless Sensor Networks

Experimental Driven Research

Simulations are important – they suffer from imperfections:
Artificial assumptions on radio propagation, traffic, failure
patterns and topologies
We decided to evaluate the performance of our algorithm in
real hardware environment.
However, testbeds are expensive to set up and to maintain,
hard to reconfigure for a different experiment and usually
feature a fixed number of nodes.
We decided to use WISEBED1: a Pan-European network of
wireless sensor networks
Consists of 750+ heterogeneous sensor nodes (such as TelosB,
Mica2, iSense or Sun Spot equipped with different sensors)

1http://www.wisebed.eu

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 52 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

WISEBED: Pan-European Testbed of Wireless Sensor Networks

WISEBED: Wireless Sensor Networks Testbed

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 53 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

WISEBED: Pan-European Testbed of Wireless Sensor Networks

Evaluation Setup

WSN Simulator Shawn
→ scalability and performance
X Network Density and Size
X Controlled Message and Node Failures

www.itm.uni-luebeck.de/ShawnWiki/

WISEBED testbed facilities
→ real world implications
X Mobility and Low-Power Scenarios
X Different locations around the E.U.
X Federated Experiments

http://wisebed.eu

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 54 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

WISEBED: Pan-European Testbed of Wireless Sensor Networks

Real Hardware Testbeds

We used 3 WISEBED testbed sites: UZL, GENEVA and CTI

66 iSense nodes (20 in UZL, 26 in UNIGE, 20 in CTI)
30 telosB nodes (15 in UZL, 15 in CTI)

iSense Platform

16 MHz 32 bit RISC – 96K RAM/128K Flash

C++

TelosB Platform

MSP430 16 bit RISC – 10K RAM/48K Flash

nesC

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 55 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Evaluating Neighborhood Discovery

Simulations: Scalability

Up to 90% less beacons exchanged in stable environments.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 56 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Evaluating Neighborhood Discovery

Simulations: Device Failures

Significantly increased Beaconing during the Failure Period (2).

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 57 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Evaluating Neighborhood Discovery

Physical Topology of Testbeds

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 58 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Channel Quality Effect on Neighborhood Discovery

Adaptive Neighborhood Discovery – LQI Thresholds

We examine the Average neighborhood size with different LQI
thresholds

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 59 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Channel Quality Effect on Neighborhood Discovery

Adaptive Neighborhood Discovery – Beacon Interval

We examine the impact of beacon interval period and the neighbor
timeout period in the detection of neighboring nodes

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 60 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Mobility Effect on Neighborhood Discovery

Real World: Mobility Experiments (Setup)

Walk path for the mobile device and positions of fixed devices.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 61 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Mobility Effect on Neighborhood Discovery

Real World: Mobility Experiments

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 62 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Mobility Effect on Neighborhood Discovery

Real World: Lifetime Experiments

20% Extended Lifetime

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 63 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Mobility Effect on Neighborhood Discovery

AdaptiveND offers:
Reduced messaging rates by 90%.
Increased network lifetime by 20%.
Lower network traffic.

Next Steps
Evaluate Duty Cycling Strategies. (ongoing)

Use AdaptiveND together with other Protocols. (ongoing)

Large Scale Federated Experiments using Wisebed. (planned)

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 64 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Speed and Quality of Adaptation

Propagation of Events across Modules

We examine the events generated by the Clustering while reacting
to events generaged by the Neighborhood discovery module

Interval 500ms / 2500ms Interval 3000ms / 15000ms

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 65 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Adaptation to Channel Failures

Effect of Channel Failures on Adaptation Process

Channel failures refer to a situation where a node is unable to
successfully send most of its outgoing messages due to
temporary noise on the wireless communication medium.
We emulate by using a node called “the Jammer”:
continuously broadcasts big messages in order to create
collisions, reduce link quality and in general reduce the
message delivery rate.
The Jammer has normal communication range, identical to all
other nodes.
We position it in such a way to disrupt almost 50% of the
network.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 66 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Adaptation to Channel Failures

Jammer position in WISEBED/CTI testbed

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 67 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Adaptation to Channel Failures

Total Number of Events generated

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 68 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Adaptation to Channel Failures

Total Number of Messages exchanged

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 69 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Adaptation to Node Failures

Effect of Node Failures on Adaptation Process

Node failures refer to a situation where a node suddently
stops communicating with its neighboring node.
We emulate node failures by switching off the “faulty” nodes.
We conduct experiments in which, after five minutes, the
running nodes randomly disable themselves with a 50%
chance.
Then after an additional five minutes, the remaining running
nodes randomly disable themselves with a 50% chance.

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 70 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Adaptation to Node Failures

Average Cluster Sizes

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 71 / 72

Distributed Algorithm Engineering Wiselib Implementation Insights Hierarchical Network Structures Evaluation

Adaptation to Node Failures

Total Number of Events generated

Ioannis Chatzigiannakis Pervasive Systems Lecture 19 72 / 72

