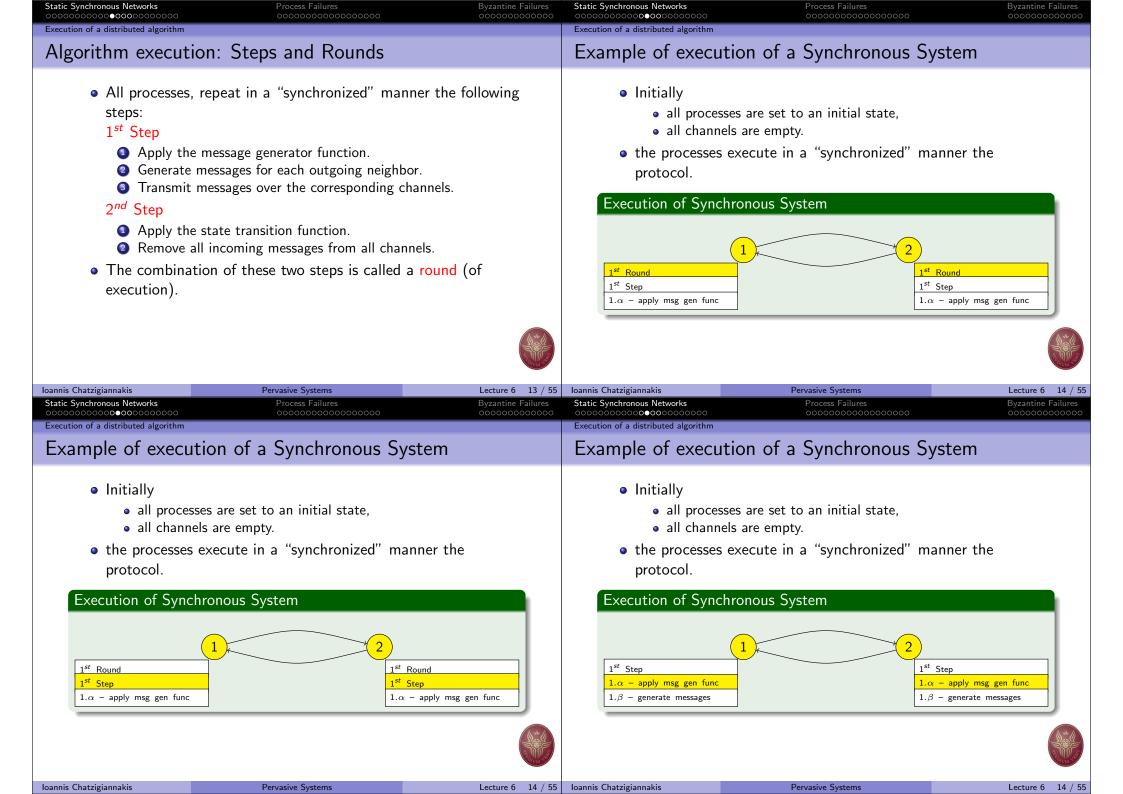
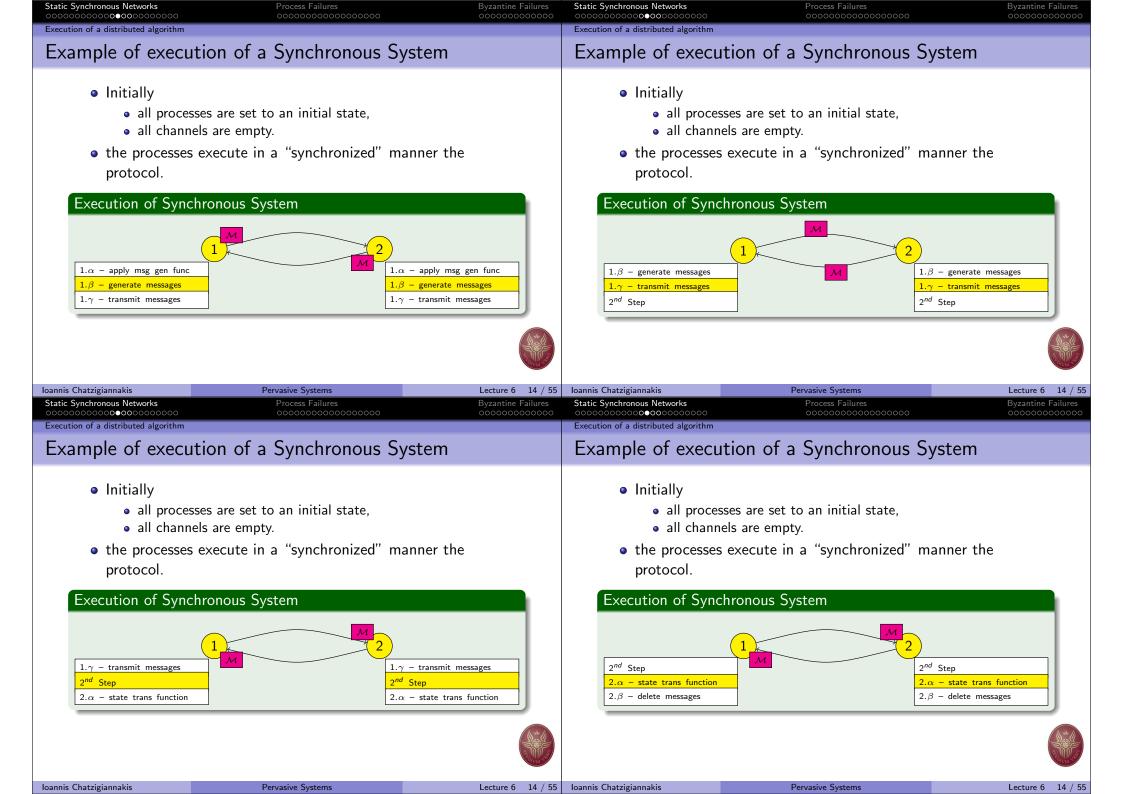

tic Synchronous Networks Process Failures	Byzantine Failures	Static Synchronous Networks	Process Failures	Byzantine Failure 0000000000
		Message-passing Model Modeling Processes		
Pervasive Systems Ioannis Chatzigiannakis Sapienza University of Rome Department of Computer, Control, and Management Engine Lecture 6: Agreement in Distributed Computing		elements or "proc • The "processi • The "processi software). • For simplicity has 1 processor • Processors execut • For simplicity only one proc	ing element" suggests a piece of ors" suggests some kind of logic we may assume that each proc or. te a collection of processes. we may assume that each proc	f hardware. al entity (i.e., essing element essor executes
is Chatzigiannakis Pervasive Systems c Synchronous Networks Process Failures 000000000000000000000000000000000000	Lecture 6 1 / 55 Byzantine Failures 000000000000	Ioannis Chatzigiannakis Static Synchronous Networks 00•0000000000000000000000000000000000	Pervasive Systems Process Failures 000000000000000000000000000000000000	Lecture 6 2 Byzantine Failur 0000000000
 The processing elements (i.e., the processes) at via a connected network (i.e., there exists 1 papair of processes). We define the network as a graph G = (V, E): comprised of a finite set V of points – the ver representing the processing untis (i.e., process). a collection E of ordered pairs of elements of the edges – representing the communication c network – m = E 	th between any tices – es) – $n = V $ $V (E \subset [V]^2)$ –	unidirectional co • or undirected – communication. • Processes can distir	be directed – to represent communication. to represent bidirectional	3 b b 2 a a a b a 1

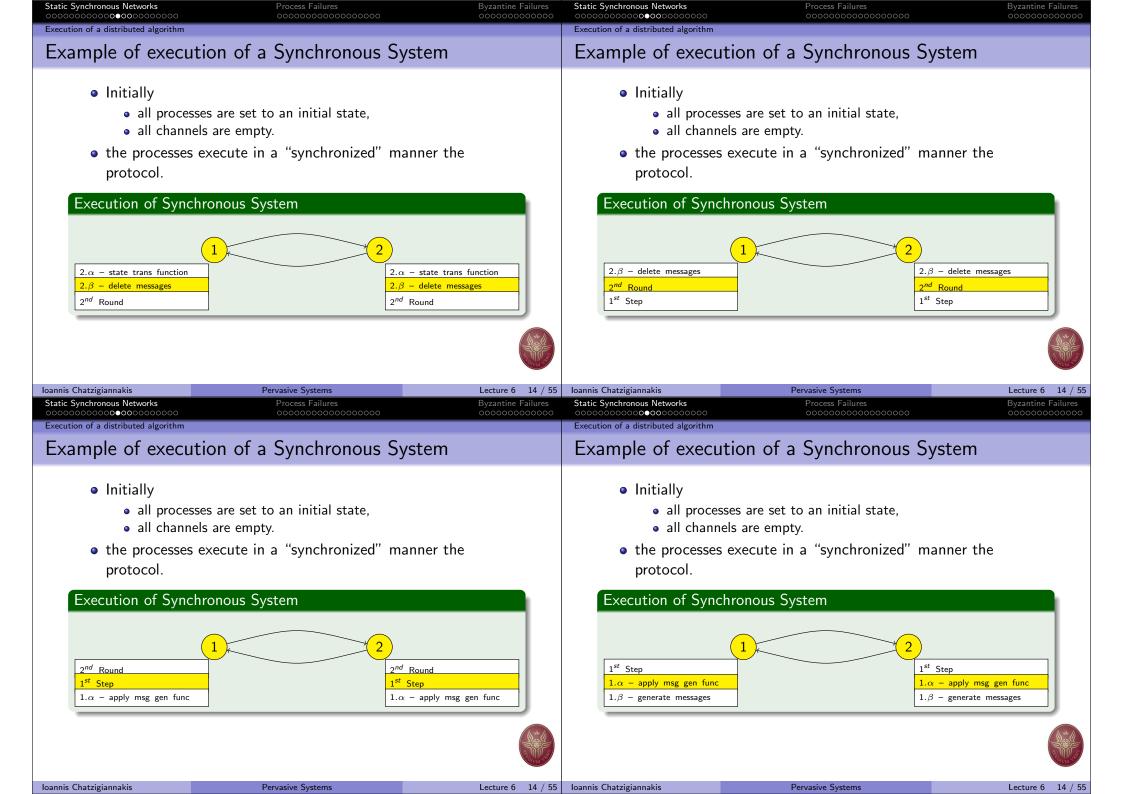
Indecling MessagesNeighboring Processes Data exchange over communication channels is done via message exchanges. We assume that each communication channel may transmit only one message at any time instance. We assume that there exists a fixed message alphabet M entains fixed throughout the execution of the system. contains the symbol aull a placeholder indicating the absence a message. We define $absg^{ott} = \{v (x, v) \in E\}$ all the vertex u. We define $absg^{ott} = \{v (x, v) \in E\}$ all the vertex u. We define $absg^{ott} = \{v (x, u) \in E\}$ all the vertex u. We define $absg^{ott} = \{v (x, u) \in E\}$ all the vertex u. We define $absg^{ott} = \{v (x, u) \in E\}$ all the vertex u. We define $absg^{ott} = \{v (x, u) \in E\}$ all the vertex u. etworkser Person form Person for the system of the shortest directed distance (u, v) denote the length of the shortest directed distance (u, v). We define <math>absgring a large number of specific network topology. Let distance (u, v), taken over all paths (u, v). Is with the algorithm may be designed for a specific network topology. With the digorithm may be designed for networks with specific properties. Is maged the stame any specific properties is called "weak" algorithm. entimeter (cl. vol.) Is maged the system of the specific properties. I</math>	ssage-passing Model	000000000000000000000000000000000000000	M	essage-passing Model		
 message exchanges. We assume that each communication channel may transmit only one message at any time instance. We assume that there exists a fixed message alphabet M emains fixed throughout the execution of the system. contains the symbol null a placeholder indicating the absence a message. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are outgoing neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are incoming neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are outgoing neighbor of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are outgoing neighbors of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are outgoing neighbor of vertex u. We define nbrg^{out} = {v (u, v) ∈ E} all the vertices that are outgoing neighbor of vertex u. We define nbrg^{out} = {v 	odeling Messages	5	Ν	leighboring Proces	sses	
is ynchronwu Rvtworks	 message exchance We assume that only one messate We assume that e remains fixed contains the contains the contai	nges. It each communication channel may ge at any time instance. It there exists a fixed message alpha ed throughout the execution of the sys	y transmit abet <i>M</i> stem.	 vertex u if the edge uv is i We say vertex u is vertex v if the edge uv is i We define nbrs^{out} = the vertices that ar of vertex u. We define nbrsⁱⁿ_u = vertices that are intervertices that are	ncluded in <i>G</i> . incoming neighbor of ncluded in <i>G</i> . = $\{v (u,v) \in E\}$ all e <i>outgoing neighbors</i> $\{v (v,u) \in E\}$ all the	9 4 1 2 5 is outgoing neighbor of 8 is incoming neighbor of nbrs ^{out} ₉ = {1,4}
etwork Properties Network Topology & Initial Knowledge distance(u,v) Distributed algorithms may be designed for a specific network topology bath from u to j in G, if any exists; otherwise distance(u,v)=∞. • ring, tree, fully connected graph diam(G) Distributed algorithm may be designed for networks with specific properties • We say that the algorithm has "initial knowledge" • An algorithm assuming a large number of specific properties is called "weak" algorithm. • An algorithm that does not assume any specific property is called "strong" algorithm - since it can be executed in a broader range of possible networks.	nis Chatzigiannakis tic Synchronous Networks 000000000000000000000000000000000000	Process Failures	Byzantine Failures St	atic Synchronous Networks	Process Failures	Lecture 6 Byzantine Fa 000000000
 Let distance(u,v) denote the length of the shortest directed path from u to j in G, if any exists; otherwise distance(u,v)=∞. diam(G) Let diam(G) denote the diameter of the graph G, the maximum distance (u,v), taken over all paths (u, v). An algorithm assuming a large number of specific properties is called "weak" algorithm. An algorithm that does not assume any specific property is called "strong" algorithm – since it can be executed in a broader range of possible networks. 					& Initial Knowledg	e
					0	
inis Chatzigiannakis Pervasive Systems Lecture 6 7 / 55 Ioannis Chatzigiannakis Pervasive Systems Lecture 6	path from u to j in distance $(u, v) = \infty$ diam(G) Let diam(G) denot	G, if any exists; otherwise o. e the diameter of the graph G, the		 Distributed algorithm as called "stopology ring, tree, f Distributed algorithm as called "weak" a An algorithm as called "stopology 	orithms may be designed ully connected graph orithm may be designed ies the algorithm has "initial ssuming a large number algorithm. m that does not assume ar ng" algorithm – since it ca	I for a specific network for networks with knowledge" of specific properties is ny specific property is

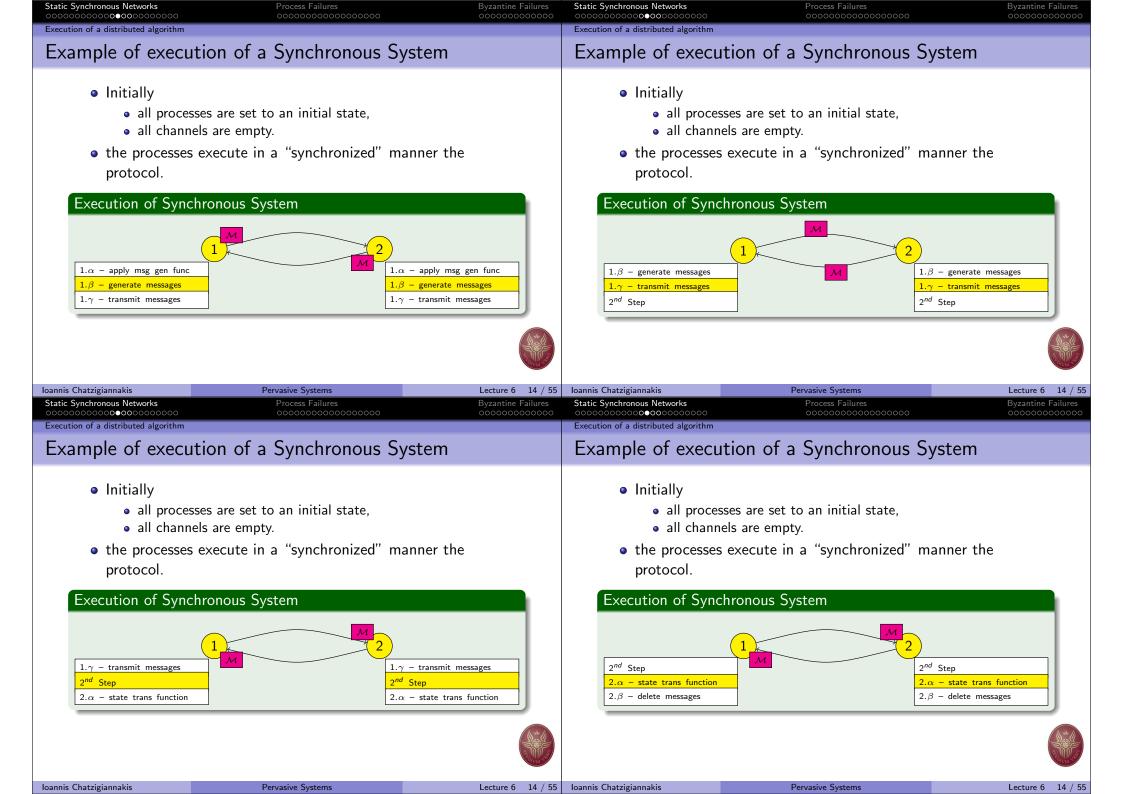
Static Synchronous Networks

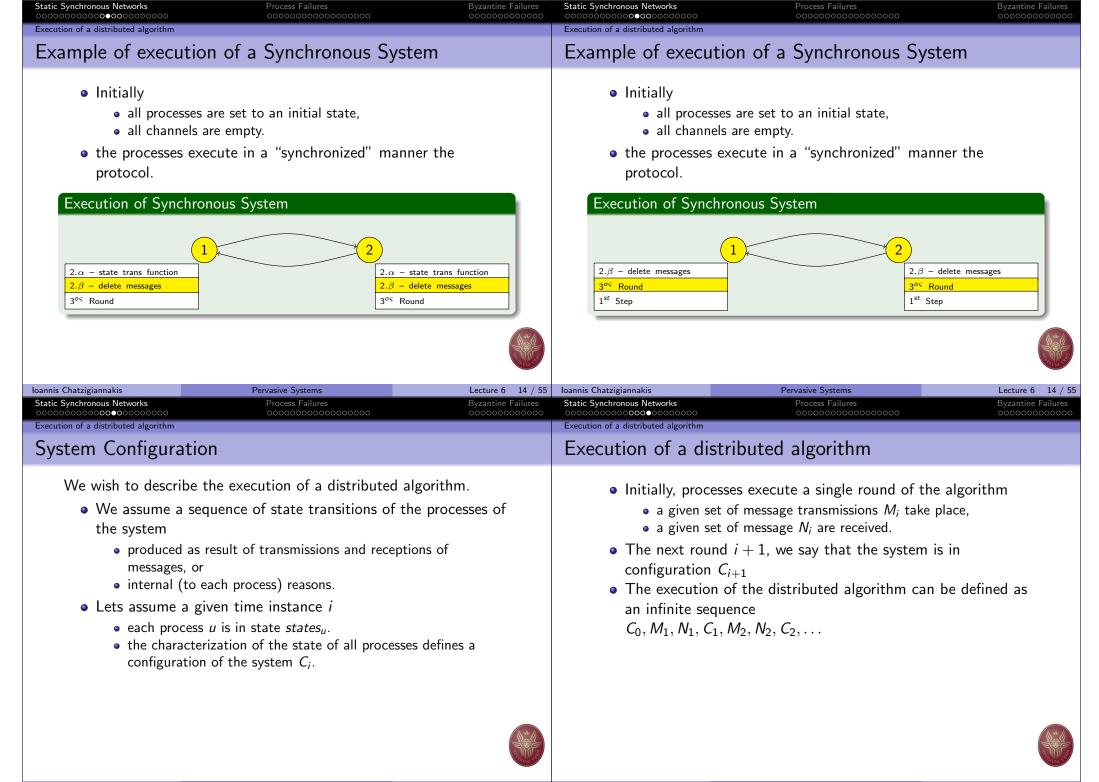
Static Synchronous Networks

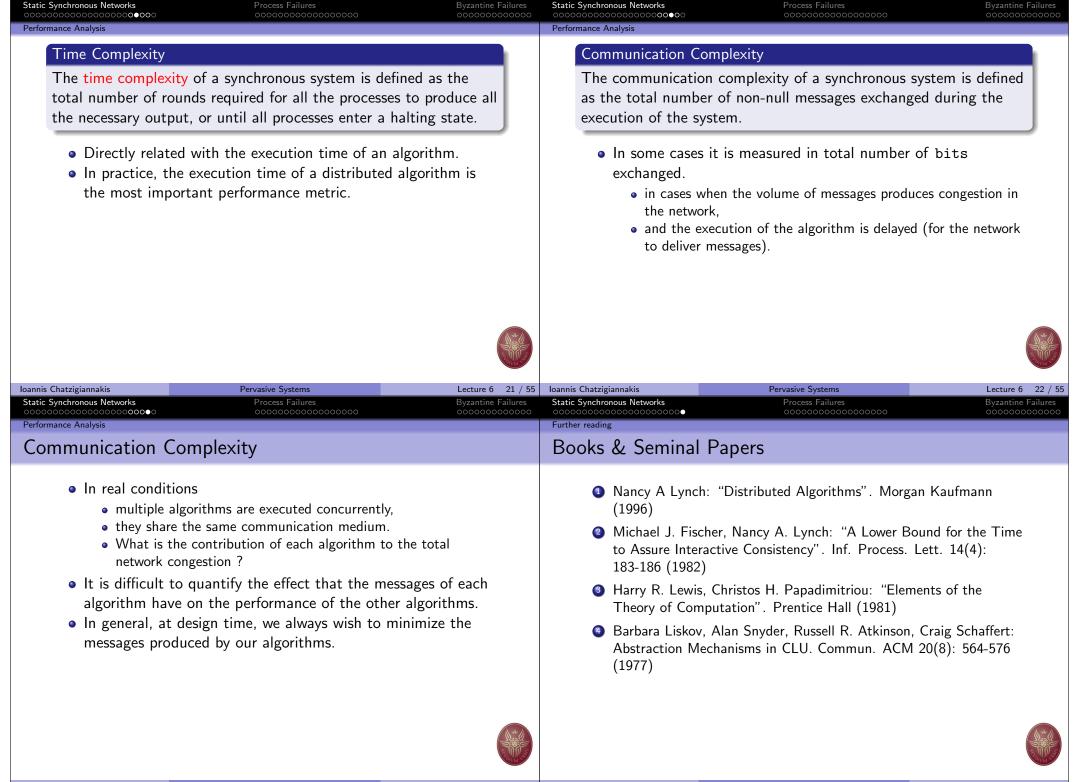


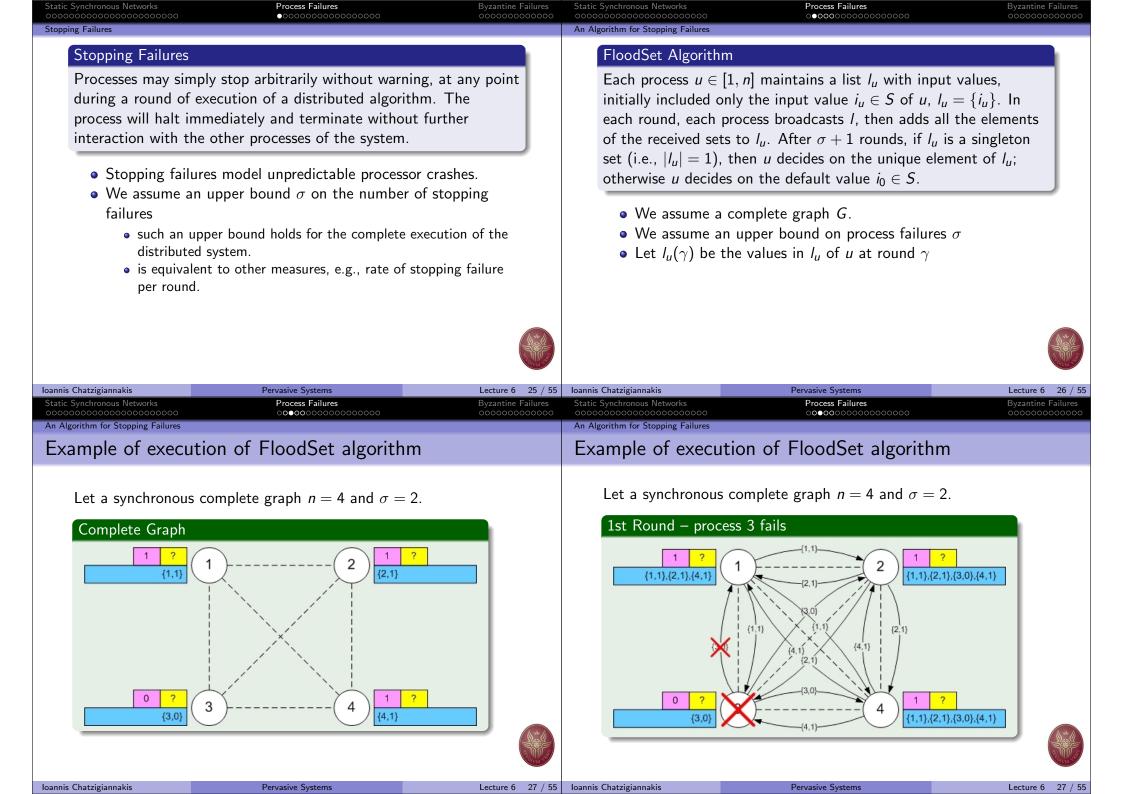

Pervasive Systems

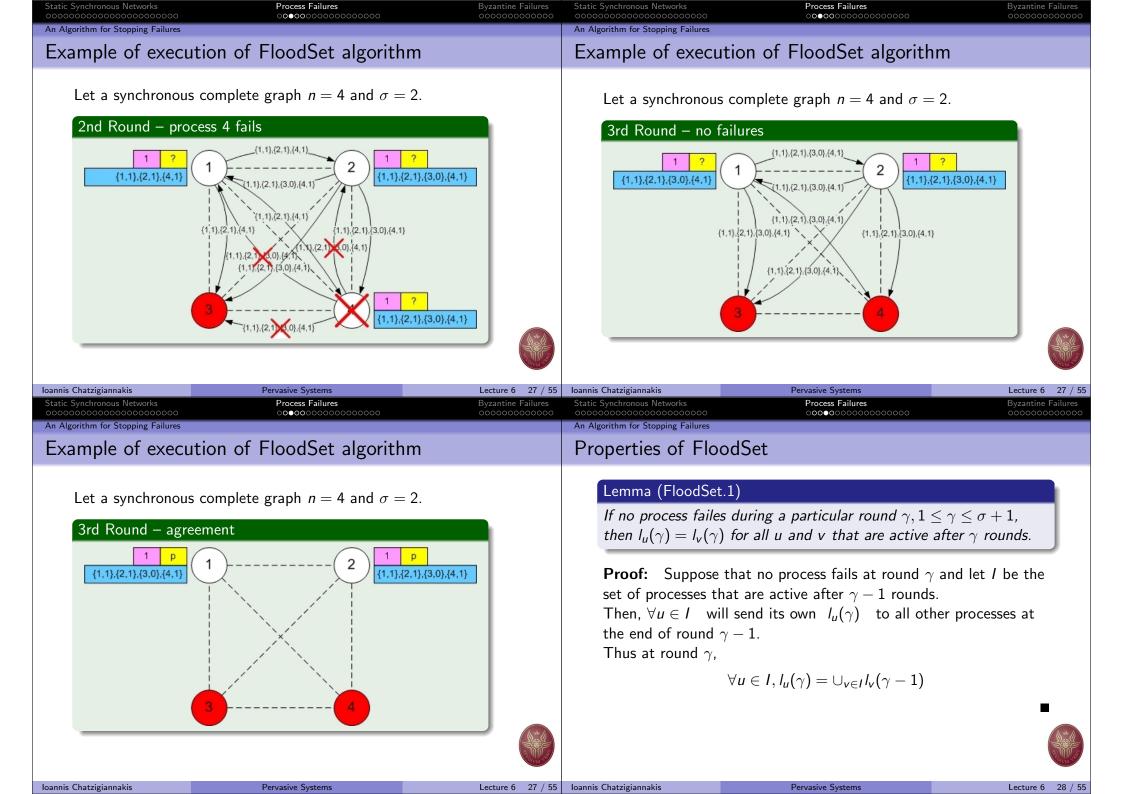

Lecture 6 11 / 55 Ioannis Chatzigiannakis


Pervasive Systems


Lecture 6 12 / 55







Static Synchronous Networks	Process Failures	Byzantine Failures	Static Synchronous Networks	Process Failures	Byzantine Failures
Failures Basic Failure Types			Byzantine Failures		
 We define two abstra failures occurring failures occurring Communication failur single message over a Stopping failure: a proor during the execution the round. A failure may hap 	act types of failures: during the transmission of mess on the processing elements (pro re: a failure during the transm a specific channel of the netw rocess terminates, either befo on of some part of the 1 st or pen during the generation of me tgoing messages are transmitted	cessors). nission of a ork. re, or after, 2 nd step of essages,	 The network inclubut continue to particulate the behavior of the unpredictable. The internal state execution of a roumessage. A faulty process na fake messages), in algorithm. We call such kind 	ides faulty processes that do articipate in the execution of he processes may be complet e of a faulty process may cha and arbitrarily, without receiv may send a message with any independently of the instruction of failures as Byzantine failu- failures to model malicious I ty attacks).	the algorithm. tely nge during the ring any content (i.e., ons of the ures.

oannis Chatzigiannakis	Pervasive Systems	Lecture 6 17 / 55	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 6 1
tatic Synchronous Networks	Process Failures	Byzantine Failures	Static Synchronous Networks	Process Failures	Byzantine Fai
ilures			Performance Analysis		
Vhy study Byzar	tine Fault Tolerance?		Measuring Perfor	mance	
Vily Study Dyzai	itine rauit rolerance:		Measuring renor	mance	
Does this ha	ppen in the real world?		We wish to s	tudy the performance of the sys	tem.
The "one in	a million" case.		We defin	e the minimum requirement,	
 Malfunctioning hardware, 				suitable distributed algorithm.	
 Buggy so 	•		How can we	measure performance?	
	nised system due to hackers.		 We use to fundamental metrics to define the complexity of distributed algorithms: 		
Assumptions	are vulnerabilities.				
 Is the cost w 				•	
			Time cor		
	e is always getting cheaper,		U Commun	ication complexity	
	s are getting more and more efficie	nt.			
		A Str. D			
nnis Chatzigiannakis	Pervasive Systems	Lecture 6 19 / 55	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 6 2

Process Failures

Byzantine Failures

Static Synchronous Networks

Byzantine Failures

Properties of FloodSet

Lemma (FloodSet.2)

Suppose that $l_u(\gamma) = l_v(\gamma)$ for all u, v that are active after γ rounds. Then for any round $\gamma', \gamma \leq \gamma' \leq \sigma + 1$, the same holds, that is, $l_u(\gamma') = l_v(\gamma')$ for all u, v that are active after γ' rounds.

Proof: All processes that have not failed for γ rounds have identical lists.

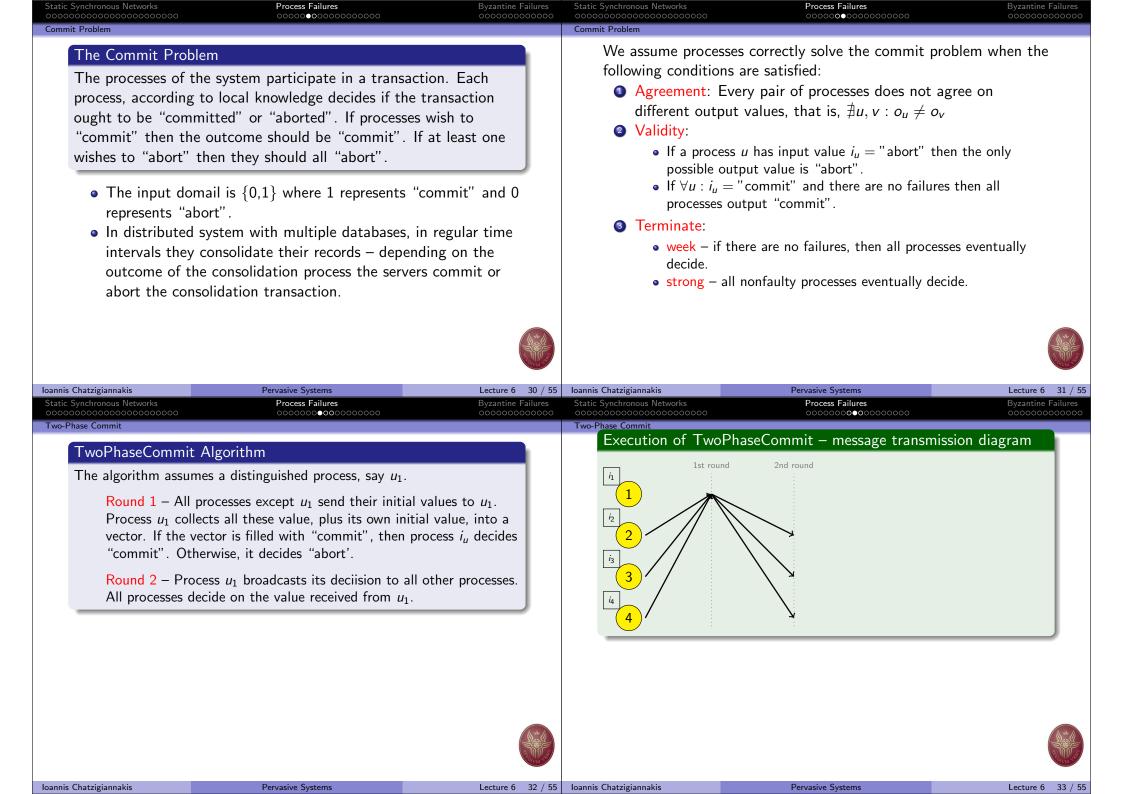
The processes that have not failed after γ round still maintain identical lists.

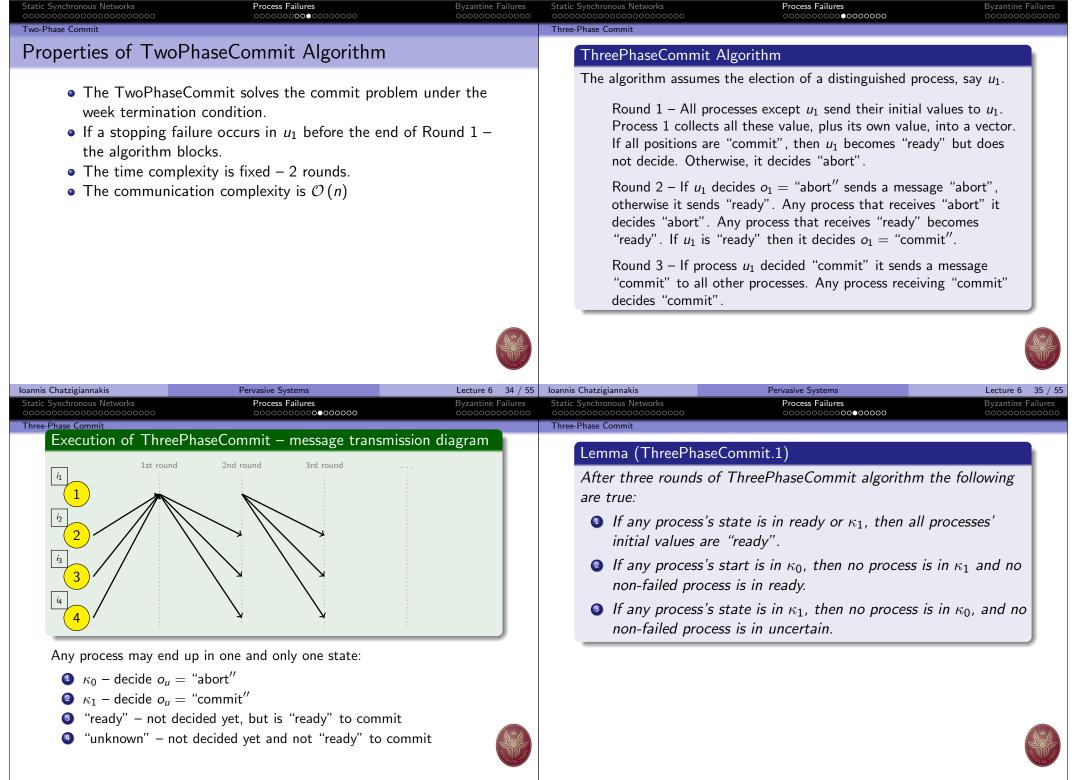
Since no other active process exists, after round γ no new value is circulated in the network.

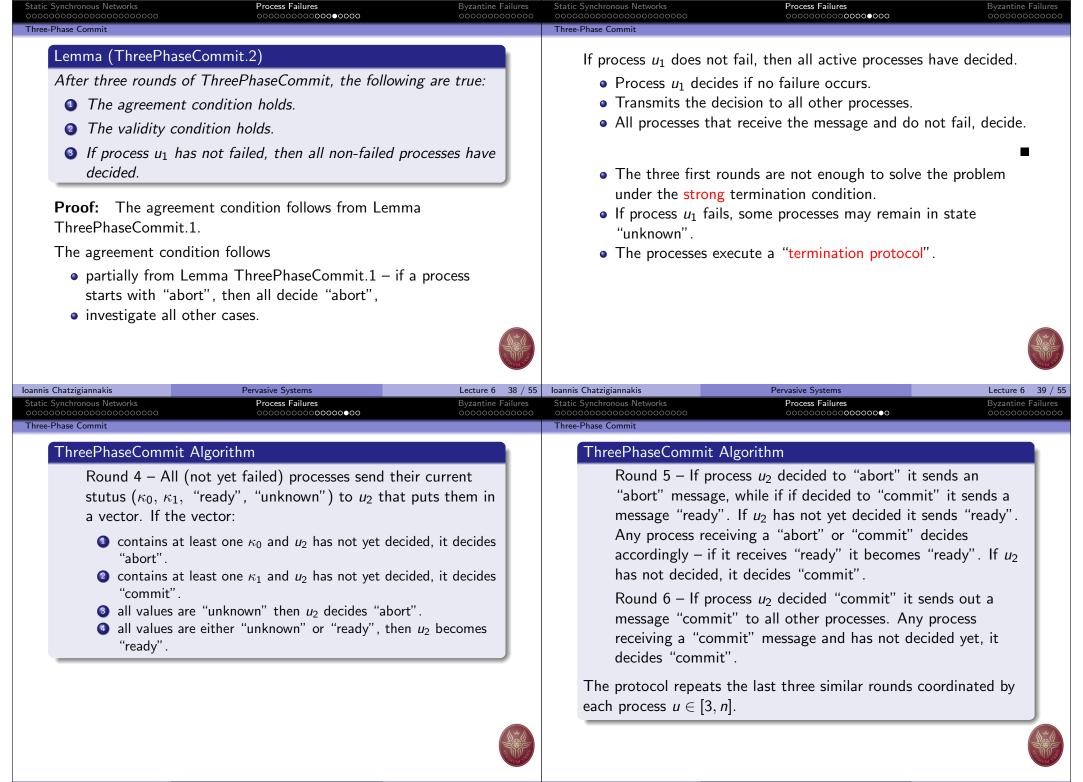
Therefore the value of I_u , $\forall u \in I$ will not change in any consecutive round.

An Algorithm for Stopping Failures

Properties of FloodSet

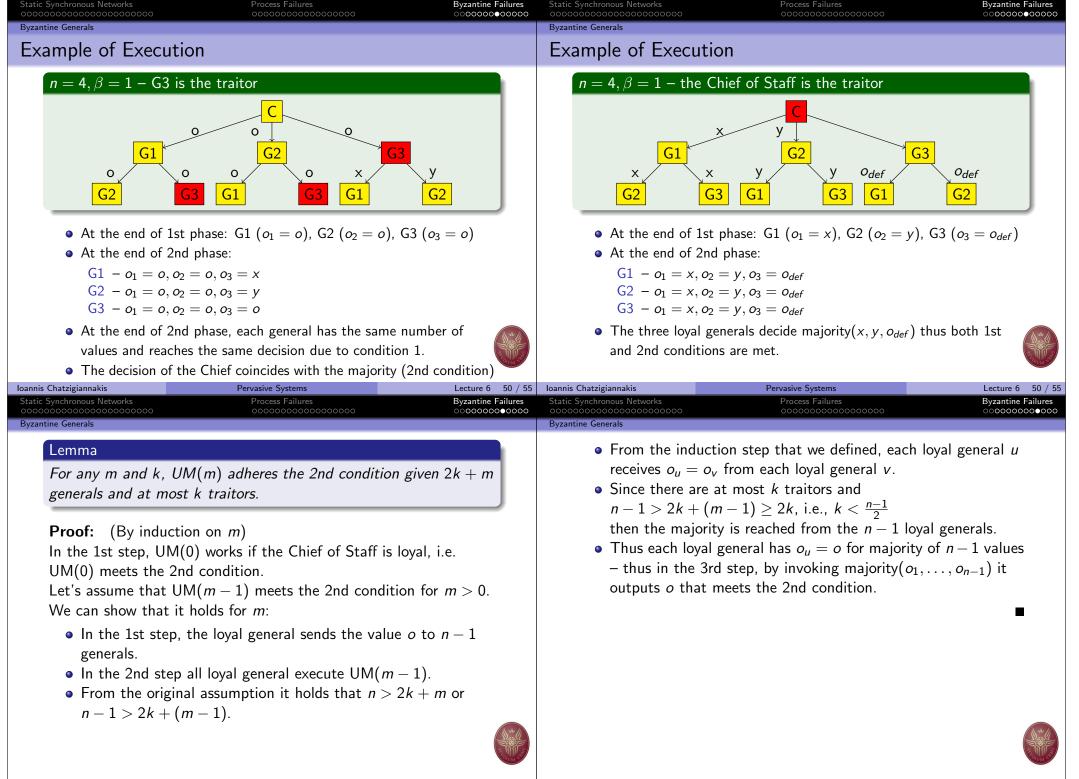

Lemma (FloodSet.3)

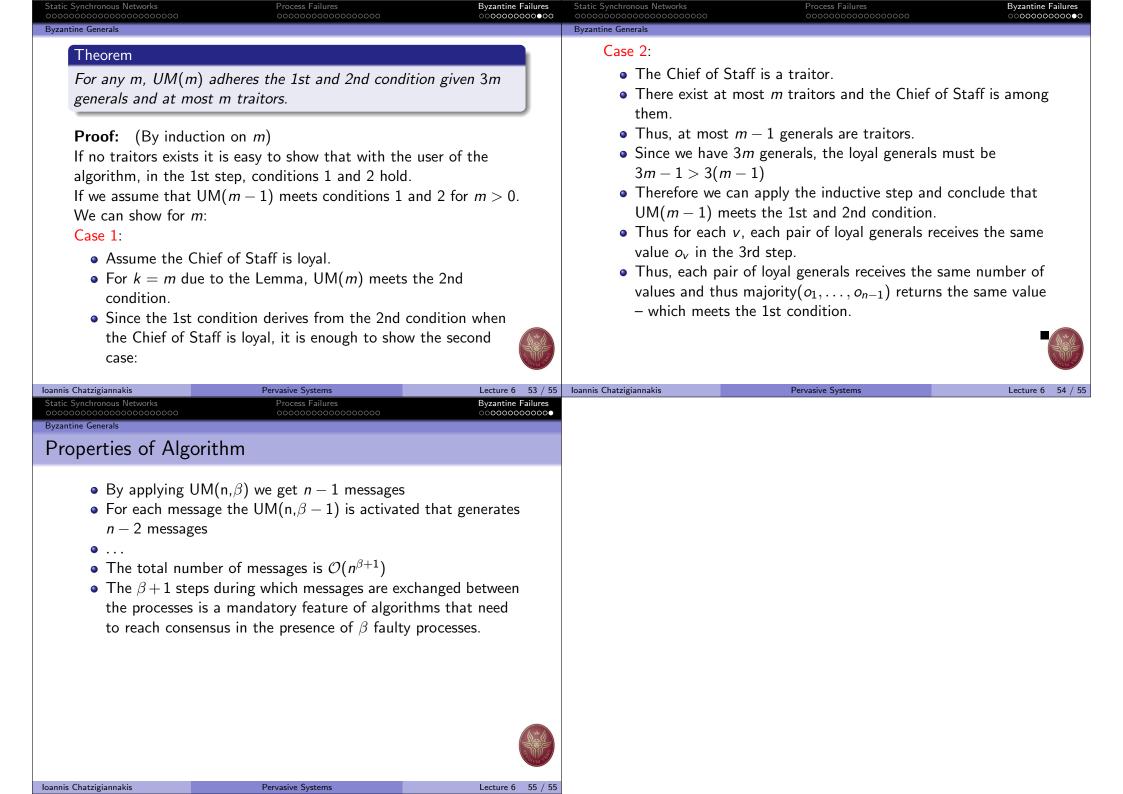

If processes u, v are both active after $\sigma + 1$ rounds, then $l_u(\sigma + 1) = l_v(\sigma + 1)$ at the end of round $\sigma + 1$.


Proof: Since there are at most σ failures, there must be a round $\gamma, 1 \leq \gamma \leq \sigma + 1$ where no process fails.

- According to lemma FloodSet.1 $I_u(\gamma) = I_v(\gamma)$ for each u, v that are still active after round γ
- According to lemma FloodSet.2 $I_u(\sigma + 1) = I_v(\sigma + 1)$ for each u, v that are still active after round $\sigma + 1$

oannis Chatzigiannakis Static Synchronous Networks	Pervasive Systems Process Failures	Lecture 6 28 / 55 Byzantine Failures	Ioannis Chatzigiannakis Static Synchronous Networks	Pervasive Systems Process Failures	Lecture 6 28 / 55 Byzantine Failures
000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
An Algorithm for Stopping Failures			An Algorithm for Stopping Failures		
Properties of Flo	odSet		Properties of Floo	dSet	
Theorem Algorithm FloodS failures.	Set solves the agreement problem for	r stopping	Message compEach message	ty is $\sigma + 1$ rounds lexity is $\mathcal{O}\left((\sigma + 1) \cdot n^2\right)$ may be of size $\mathcal{O}(n)$ bits n complexity in bits is $\mathcal{O}\left((\sigma + 1)^2\right)$). n^{3})
Proof:) * 11)
Termination cond	lition holds – all processes that are a	ctive until the	Alternative rules		
end of round $\sigma+$	-		 Instead of a pr 	edefined value $i_0 \in S$, choose min	n(<i>S</i>)
Validity condition			 Processes send their list (OptF 	only messages when they detect FloodSet)	: a change in
• If all process $\{\tau\}$	es have initial value $ au$ then the list t	ransmitted is		,	
• The list I_u w	ill not changed at the end of round	$\sigma+1$			
Agreement condit	ion holds –				
 According to 	FloodSet.3				





Static Synchronous Networks	Process Failures ○○○○○○○○○○○○○○○	Byzantine Failures	Static Synchronous Networks	Process Failures 000000000000000000	Byzantine Failures ●0000000000
Three-Phase Commit Properties of Threef	PhaseCommit algorithm		Byzantine Failures Byzantine Failures		
under the strong By induction Based on Len ThreePhaseC Time complexity	Commit algorithm solves the com termination condition on the number of rounds. nmas ThreePhaseCommit.1, ommit.2 is $3n$ rounds – $\mathcal{O}(n)$ complexity is $\mathcal{O}(n^2)$	nmit problem	 but continue to p The behavior of t unpredictable. The internal state execution of a rou message. A faulty process r fake messages), ir algorithm. We call such kind 	ides faulty processes that do n articipate in the execution of t he processes may be complete and arbitrarily, without receivin may send a message with any o independently of the instruction of failures as Byzantine failur failures to model malicious be ty attacks).	the algorithm. ly ge during the ng any content (i.e., ns of the es .
oannis Chatzigiannakis Static Synchronous Networks 000000000000000000000000000000000000	Pervasive Systems Process Failures 000000000000000000000000000000000000	Lecture 6 42 / 55 Byzantine Failures o●ooooooooooooooo	Ioannis Chatzigiannakis Static Synchronous Networks 000000000000000000000000000000000000	Pervasive Systems Process Failures 000000000000000000000000000000000000	Lecture 6 43 / Byzantine Failure oo€00000000
 Does this happer The "one in a mine Malfunctionin Buggy softwa Compromised Assumptions are Is the cost worth Hardware is a 	n in the real world? illion" case. ng hardware, re, system due to hackers. vulnerabilities.		 Four generals wish to enemy city. Among the generals must agree to of the actions of the tracarried out by messenge Consensus problem the presence of by Possible input/out 	coordinate the attack of their e generals there exits a traitor o the same attack (or retreat) raitor. Communication among gers. The traitor is free to do a m in a system with $n = 4$ proc yzantine failures. tput values are "yes" or "no"	. All loyal plan regardless generals is as he chooses. cesses under
			S = {" yes" , " no"	Ĵ	

Static Synchronous Networks	Process Failures 00000000000000000	Byzantine Failures	Static Synchronous Networks	Process Failures 00000000000000000	Byzantine Failu ○○○○●○○○○○	
Byzantine Generals Problem Statement			Byzantine Generals Discussion			
 On general achieves the role of Chief of Staff. The Chief of Staff has to send an order to each of the n - 1 generals such that: All faithful generals follow the same order (all non faulty processes receive the same message) If the Chief of Staff is faithful, then all faithful generals follow his orders (if all processes are non-faulty then the messages received are the same with the transmitting process) The above conditions are known as the conditions for "consistent broadcast". Note: If the Chief of Staff is faithful, then the 1st condition derives from the 2nd. But he may be the traitor. 			 A solution for the Byzantine Generals problems allows: Reliable communication in the presence of tampered messages Reliable communication in the presence of message omissions Dealing with message omissions (link/stopping failures) is the most common approach. We name faults Byzantine all faults that fall under these two categories. All solutions to the problem require a network size at least three times the number of failures – that is n > 3β. Different situation from stopping failures where n and σ did not follow any relationship. May sound surprising high, due to the <i>triple-modular redundancy</i> – that states that n > 2β + 1. 			
oannis Chatzigiannakis Static Synchronous Networks 000000000000000000000000000000000000	Pervasive Systems Process Failures 0000000000000000000	Lecture 6 46 / 55 Byzantine Failures 000000000000	loannis Chatzigiannakis Static Synchronous Networks 000000000000000000000000000000000000	Pervasive Systems Process Failures 000000000000000000000000000000000000	Lecture 6 47 Byzantine Fail ⊙⊙⊙⊙⊙⊙⊙⊙⊙	
Byzantine Generals mpossibility result			Byzantine Generals Impossibility result			
Let's examine the follo	wing cases involving 3 generals	s:	Let's examine the foll	lowing cases involving 3 general	ls:	
has to attack. 2nd Condition	Attack General 2 General 1 ral 1 in order to meet the 2nd of faithful, then all faithful general	Retreat General 2 etreat" condition, he	Case #1 Chief of Staff Attack General 1 said "retreat" In case #2, if General 1 Chief of Staff Attack General 1 Said "retreat" In case #2, if General 1 Chief of Staff Said "retreat"	Attack General 2 eneral 1 attacks then he violate		

tatic Synchronous Networks 000000000000000000000000000000000000	Process Failures 00000000000000000	Byzantine Failures ○○○○○●○○○○○○	Static Synchronous Networks 000000000000000000000000000000000000	Process Failures 000000000000000000	Byzantine Fail ○○○○○○●○○○	
npossibility result			-	and Pease Algorithm		
 Given the messages received by General 1, each case looks symmetric. General 1 cannot break the symmetry. No solution exists for the Byzantine Generals in case of 3 generals and 1 traitor. Generalization of the impossibility result: No solution exists for less then 3β + 1 generals if it has to deal with β traitors. 			 L. Lamport, R. Shostak, M. Pease: "The Byzantine Generals Problem", ACM Transactions on Programming Languages and Systems, 4(3): pp 382-401, 1982. The algorithm makes three assumptions regarding communication: All message transmissions are delivered correctly. The receivers knows the identity of the sender. The absence of a message can be detected. The 1st and 2nd assumptions limit the traitor from interfering with the transmissions of the other generals. The 3rd assumptions prevents the traitor to delay the attack by not sending any message. In computer networks conditions 1 and 2 assume that the processors are directly connected and communication failures are counted as part of the β failures. 			
nnis Chatzigiannakis atic Synchronous Networks	Pervasive Systems Process Failures	Lecture 6 48 / 55 Byzantine Failures	Ioannis Chatzigiannakis Static Synchronous Networks	Pervasive Systems Process Failures	Lecture 6 4 Byzantine Fai	
zantine Generals	000000000000000000000000000000000000000	000000000000	oooooooooooooooooooooooooooooooooooooo	000000000000000000000000000000000000000	000000000	
amport, Shostak an	d Pease Algorithm		Lamport, Shostak	and Pease Algorithm		
 the Chief of Staff We define function the majority of description Algorithm UM(n,0) (for the Chief of Staff 	predefined decision o_{def} that is is a traitor (e.g., retreat). n majority $(o_1, \ldots, o_{n-1}) = o$ the cisions $o_u = o$	nat computes nerals.	 For each gene Set o_u to o_{def}. Send the UM(n-1) For each gene Set o_v to received set 	Staff transmits decision o to all g ral u the value received, or if no message value o_u to the $n-2$ generals by inv , $m-1$). ral u and each $v \neq u$ the value received from u at step 2,	received, set to roking	
		1				

