

Localization

Range Based

Link Quality Indicator (LQI)

• Another metric of the current quality of the received signal.

LQI measures the received energy and/or SNR for each received packet. When energy level and SNR information are combined, they can indicate whether a corrupt packet resulted from low signal strength or from high signal strength plus interference.

How easily a received signal can be demodulated by accumulating the magnitude of the error between ideal constellations and the received signal over the 64 symbols immediately following the sync word?

LQI vs RSSI

Localization

Range Based

- RSSI is a signal strength indication
 - It does not care about the "quality" or "correctness" of the signal.
- LQI does not care about the actual signal strength,
 - it is a relative measurement of the link quality: a low value indicates a better link than what a high value does.
 - but the signal quality often is linked to signal strength.
 - a strong signal is likely to be less affected by noise and thus will be seen as "cleaner" or more "correct" by the receiver.

							V	
Ioannis Chatzigiannakis	Pervasive Systems	Lecture 7 1	11 / 28	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 7	12 / 28	
Localization	000			Localization	00			
Range Based				Range Based				
LQI vs RSSI			Packet Reception Rate (PRR)					
 "Extreme cases" A weak sign high LQI. A weak sign and low LQI Strong noise high RSSI at A strong sig low LQI. A very stron give high RSSI 	to illustrate how RSSI and LQI v al in the presence of noise may g al in "total" absence of noise ma e (usually coming from an interfe nd high LQI. nal without much noise may give g signal that causes the receiver SSI and high LQI.	work: ive low RSSI and ay give low RSSI rer) may give e high RSSI and to saturate may		 PRR is approvide the second second	oximated as the probability of su acket between two neighbor nor h that means the link quality is ntric reliability index evaluating a sender is received by all inten ender node: <u>No. of nodes receiving a</u> Total no. of nodes in the trans	accessfully des. high and vice how a broadcast ded receivers. <u>packet</u> mission range		
						(A CONTRACTOR	

Ioannis Chatzigiannakis

Pervasive Systems

Lecture 7 16 / 28 Ioannis Chatzigiannakis

Pervasive Systems

Lecture 7 16 / 28

I ocalization Localization Trilaterat Trilateration Trilateration • Rearranging terms gives a linear equation in $(x_u, y_u)!$ • Assuming distances to three points with known location are exactly given • Solve system of equations (Pythagoras!) $2(x_3 - x_1)x_{11} - 2(y_3 - y_1)y_{11} = (r_1^2 - r_2^2) - (x_1^2 - x_2^2) - (y_1^2 - y_2^2)$ • (x_i, y_i) : coordinates of anchor point *i*, r_i distance to anchor *i* • (x_{μ}, y_{μ}) : unknown coordinates of node $2(x_3 - x_2)x_{11} - 2(y_3 - y_2)y_{11} = (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2)$ $(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2$ for i = 1, ..., 3• Subtracting eq. 3 from 1 & 2: $(x_1 - x_{\mu})^2 - (x_3 - x_{\mu})^2 + (y_1 - y_{\mu})^2 - (y_3 - y_{\mu})^2 = r_1^2 - r_3^2$ $(x_2 - x_{\mu})^2 - (x_3 - x_{\mu})^2 + (y_2 - y_{\mu})^2 - (y_3 - y_{\mu})^2 = r_2^2 - r_3^2$ Ioannis Chatzigiannakis Pervasive Systems Lecture 7 20 / 28 Ioannis Chatzigiannakis Lecture 7 20 / 2 Pervasive Systems Localization Localization Trilateratio Trilateration as matrix equation Example • $(x_1, y_1) = (2, 1)$ • Rewriting as a matrix equation: • $(x_2, y_2) = (5, 4)$ • $(x_3, y_3) = (8, 2)$ $2\begin{bmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_2 & y_3 - y_2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} (r_1^2 - r_3^2) - (x_1^2 - x_3^2) - (y_1^2 - y_3^2) \\ (r_2^2 - r_3^2) - (x_2^2 - x_3^2) - (y_2^2 - y_3^2) \end{bmatrix}$ • $r_1 = 10^{0.5}, r_2 = 2, r_3 = 3$ $2\begin{bmatrix} 6 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_u \\ y_u \end{bmatrix} = \begin{bmatrix} 64 \\ 22 \end{bmatrix}$ • $!(x_{\mu}, y_{\mu}) = (5, 2)$

	000					
Two Ideas			Iterative multilateration			
 Step 1: DV Count n Start by distance Step 2: DV If range improve 	-Hop number of hops, assume length of on a counting hops between anchors, div a. -Distance e estimates between neighbors exist, a total length of route estimation in p	ie hop is known. vide known use them to previous method	 Assume som perform trian Idea: let mon spread positi Problem: Er 	e nodes can hear at least three a ıgulation), but not all re and more nodes compute posi on knowledge in the network rors accumulate	inchors (to tion estimates,	
Ioannis Chatzigiannakis Localization 000000000000000000000000000000000000	Pervasive Systems	Lecture 7 26 / 28	Ioannis Chatzigiannakis Localization 000000000000000000000000000000000000	Pervasive Systems	Lecture 7 27 / 28	
Range-free: Multi-hop Techniques	teration		Other techniques SpotLight			
$H: \begin{bmatrix} (18,20) \\ (18,20) \\ (2,10) \\ (8,0) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (2,10) \\ (3,5) \\ (3$			 Nodes randomly deployed from UAV/helicopter Nodes self-organize into a network, execute a time-sync protocol The UAV (Spotlight device) flies over the network and generates (invisible) light events Nodes detect the events and report the timestamps The Spotlight device computes the location of the nodes No extra hardware needed on nodes! 			
Ioannis Chatzigiannakis	Pervasive Systems	Lecture 7 27 / 28	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 7 28 / 28	

Other techniques SpotLight

Localization

