
Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Pervasive Systems

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 21:
Wiselib: Algorithmic Library for WSN

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 1 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

Typical Problems In WSN Programming

Theoreticians are not interested in programming
Ideally they just have to write their algorithms
And do not need to care about boilerplate code

Practioners are not interested in theory
Just need a good algorithm for their task
Without having to study the field for years

⇒ There is need for an algorithm library

With lots of algorithms for all kinds of tasks
That are easy to integrate into existing systems
And are combinable
And easily enhanceable

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 2 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

Typical Problems In WSN Programming

Theoreticians are not interested in programming
Ideally they just have to write their algorithms
And do not need to care about boilerplate code

Practioners are not interested in theory
Just need a good algorithm for their task
Without having to study the field for years

⇒ There is need for an algorithm library

With lots of algorithms for all kinds of tasks
That are easy to integrate into existing systems
And are combinable
And easily enhanceable

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 2 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

Typical Problems In WSN Programming

Theoreticians are not interested in programming
Ideally they just have to write their algorithms
And do not need to care about boilerplate code

Practioners are not interested in theory
Just need a good algorithm for their task
Without having to study the field for years

⇒ There is need for an algorithm library

With lots of algorithms for all kinds of tasks
That are easy to integrate into existing systems
And are combinable
And easily enhanceable

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 2 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

Typical Problems In WSN Programming

Theoreticians are not interested in programming
Ideally they just have to write their algorithms
And do not need to care about boilerplate code

Practioners are not interested in theory
Just need a good algorithm for their task
Without having to study the field for years

⇒ There is need for an algorithm library

With lots of algorithms for all kinds of tasks
That are easy to integrate into existing systems
And are combinable
And easily enhanceable

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 2 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

Typical Problems In WSN Programming

Theoreticians are not interested in programming
Ideally they just have to write their algorithms
And do not need to care about boilerplate code

Practioners are not interested in theory
Just need a good algorithm for their task
Without having to study the field for years

⇒ There is need for an algorithm library

With lots of algorithms for all kinds of tasks
That are easy to integrate into existing systems
And are combinable
And easily enhanceable

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 2 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

Solution

The Wiselib
A library of about 50 algorithms, lots more to come! These are

Extensible
Combineable
Exchangeable

Currently includes the following algorithm categories

Clustering

Graph Coloring

Crypto

Energy Preservation

Localization

Metrics

Routing

Synchronization

Topology Control

Tracking

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 3 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

The Wiselib is. . .

A C++ project
Free (as in freedom), licensed under LGPL
NOT a middleware (we will see later why)

github.com/ibr-alg/wiselib

There you’ll find:

The Documentation Wiki
The Wiselib Sourcecode
The Bugtracker
Instructions on how to download & install the Wiselib

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 4 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

A Library Of Algorithms

Wiselib Distributions

Testing

Under development

Not necessarily tested on all platforms

New things that may still change their interface

“Release early, release often”

Stable

Tested on all supported platforms

Interfaces will not change anymore

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 5 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Platform Independence

Platform Independence

When scientists all over the world work together, they likely
use different experimentation environments
The Wiselib aims to be versatile

So it can be used for different tasks
Which also require different hardware

In lots of applications we need heterogeneous nodes
But do not want to write the same code again and again for
each node type

�We want the Wiselib to be platform independent!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 6 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Platform Independence

Platform Independence
iSense iMote2 ScatterWeb MSB Tmote Sky

Hardware
Jennic Intel XScale MSP430 MSP 430

Operating System
iSense TinyOS Scatterweb / Contiki Contiki / TinyOS

ROM / RAM
128kB / 92kB 32MB / 32MB 48kB / 10kB 48kB / 10kB

Memory Management
Dynamic Dynamic Static Dynamic

Programming Language
C++ nesC C C, nesC

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 7 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Platform Independence

Platform Independence

Some platforms do not provide dynamic memory
And/or have limited RAM
Some do not provide a C++ environment

No libstdc++
So no exception handling, RTTI, virtual inheritance, etc...

The “extremely portable” subset of C++

C (except malloc / free)

Static memory management

“Simple” (non-virtual) inheritance

Templates

Use C-Headers (<math.h> instead of <cmath>)

The Wiselib adheres to those conditions!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 8 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Memory Management

Memory Management

Platform independence demands:

No malloc/free or new/delete
� Data can be allocated in 3 ways:

Global
Static
On the stack (function-local)

Constructors of global/static variables will be called before
main()

. . . in undefined order!
That can be very undesirable:
1 Radio r a d i o ;
2 SomeAlgorithm a l go (r a d i o) ; // Might r e c e i v e u n i n i t i a l i z e d r a d i o !

� Provide init()/destruct() methods, call them manually

� Hide initialization method of system objects (“Facets”)

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 9 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Memory Management

Memory Management

Platform independence demands:

No malloc/free or new/delete
� Data can be allocated in 3 ways:

Global
Static
On the stack (function-local)

Constructors of global/static variables will be called before
main()

. . . in undefined order!
That can be very undesirable:
1 Radio r a d i o ;
2 SomeAlgorithm a l go (r a d i o) ; // Might r e c e i v e u n i n i t i a l i z e d r a d i o !

� Provide init()/destruct() methods, call them manually

� Hide initialization method of system objects (“Facets”)

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 9 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Memory Management

Memory Management

Platform independence demands:

No malloc/free or new/delete
� Data can be allocated in 3 ways:

Global
Static
On the stack (function-local)

Constructors of global/static variables will be called before
main()

. . . in undefined order!
That can be very undesirable:
1 Radio r a d i o ;
2 SomeAlgorithm a l go (r a d i o) ; // Might r e c e i v e u n i n i t i a l i z e d r a d i o !

� Provide init()/destruct() methods, call them manually

� Hide initialization method of system objects (“Facets”)

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 9 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Memory Management

Memory Management

Platform independence demands:

No malloc/free or new/delete
� Data can be allocated in 3 ways:

Global
Static
On the stack (function-local)

Constructors of global/static variables will be called before
main()

. . . in undefined order!
That can be very undesirable:
1 Radio r a d i o ;
2 SomeAlgorithm a l go (r a d i o) ; // Might r e c e i v e u n i n i t i a l i z e d r a d i o !

� Provide init()/destruct() methods, call them manually

� Hide initialization method of system objects (“Facets”)

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 9 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Memory Management

Memory Management

Platform independence demands:

No malloc/free or new/delete
� Data can be allocated in 3 ways:

Global
Static
On the stack (function-local)

Constructors of global/static variables will be called before
main()

. . . in undefined order!
That can be very undesirable:
1 Radio r a d i o ;
2 SomeAlgorithm a l go (r a d i o) ; // Might r e c e i v e u n i n i t i a l i z e d r a d i o !

� Provide init()/destruct() methods, call them manually

� Hide initialization method of system objects (“Facets”)

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 9 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Inheritance

Problem: Virtual inheritance is not portable.

What would we use virtual inheritance for?

� Code reuse
Base class provides functionality which can be used by derived
class

Still possible with non-virtual inheritance

� Abstraction
Define an interface which classes can use to interact with
each other

An algorithm only has to know the interface of the things its
using, the concrete implementation is exchangeable

We want both!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 10 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Inheritance

Problem: Virtual inheritance is not portable.

What would we use virtual inheritance for?

� Code reuse
Base class provides functionality which can be used by derived
class

Still possible with non-virtual inheritance

� Abstraction
Define an interface which classes can use to interact with
each other

An algorithm only has to know the interface of the things its
using, the concrete implementation is exchangeable

We want both!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 10 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Inheritance

Problem: Virtual inheritance is not portable.

What would we use virtual inheritance for?

� Code reuse
Base class provides functionality which can be used by derived
class

Still possible with non-virtual inheritance

� Abstraction
Define an interface which classes can use to interact with
each other

An algorithm only has to know the interface of the things its
using, the concrete implementation is exchangeable

We want both!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 10 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Inheritance

Problem: Virtual inheritance is not portable.

What would we use virtual inheritance for?

� Code reuse
Base class provides functionality which can be used by derived
class

Still possible with non-virtual inheritance

� Abstraction
Define an interface which classes can use to interact with
each other

An algorithm only has to know the interface of the things its
using, the concrete implementation is exchangeable

We want both!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 10 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Inheritance

Problem: Virtual inheritance is not portable.

What would we use virtual inheritance for?

� Code reuse
Base class provides functionality which can be used by derived
class

Still possible with non-virtual inheritance

� Abstraction
Define an interface which classes can use to interact with
each other

An algorithm only has to know the interface of the things its
using, the concrete implementation is exchangeable

We want both!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 10 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Inheritance

Do it with templates!

The “interface” is given by a piece of documentation, called
Concept

An algorithm expects a template parameter for the type of the
concrete class, which is called Model

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 11 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Template Based Design

1 c l a s s iSenseRad ioMode l {
2 i n t e n a b l e r a d i o () {}
3 }

1 c l a s s ShawnRadioModel {
2 i n t e n a b l e r a d i o () {}
3 }

1 template<typename Radio P>
2 c l a s s A lgo r i thm
3 {
4 t yp ed e f Radio P Radio ;
5
6 i n t i n i t (Radio& r a d i o) {
7 r a d i o = &r a d i o ;
8 r a d i o −>e n a b l e r a d i o () ;
9 }

10
11 Radio : : s e l f p o i n t e r t r a d i o ;
12 }

1 Algor i thm<iSenseRad ioMode l> a l g r i t hm i s e n s e ;
2 Algor i thm<ShawnRadioModel> a l g r i t hm shawn ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 12 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Template Based Design

1 c l a s s iSenseRad ioMode l {
2 i n t e n a b l e r a d i o () {}
3 }

1 c l a s s ShawnRadioModel {
2 i n t e n a b l e r a d i o () {}
3 }

1 template<typename Radio P>
2 c l a s s A lgo r i thm
3 {
4 t yp ed e f Radio P Radio ;
5
6 i n t i n i t (Radio& r a d i o) {
7 r a d i o = &r a d i o ;
8 r a d i o −>e n a b l e r a d i o () ;
9 }

10
11 Radio : : s e l f p o i n t e r t r a d i o ;
12 }

1 Algor i thm<iSenseRad ioMode l> a l g r i t hm i s e n s e ;
2 Algor i thm<ShawnRadioModel> a l g r i t hm shawn ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 12 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Template Based Design

1 c l a s s iSenseRad ioMode l {
2 i n t e n a b l e r a d i o () {}
3 }

1 c l a s s ShawnRadioModel {
2 i n t e n a b l e r a d i o () {}
3 }

1 template<typename Radio P>
2 c l a s s A lgo r i thm
3 {
4 t yp ed e f Radio P Radio ;
5
6 i n t i n i t (Radio& r a d i o) {
7 r a d i o = &r a d i o ;
8 r a d i o −>e n a b l e r a d i o () ;
9 }

10
11 Radio : : s e l f p o i n t e r t r a d i o ;
12 }

1 Algor i thm<iSenseRad ioMode l> a l g r i t hm i s e n s e ;
2 Algor i thm<ShawnRadioModel> a l g r i t hm shawn ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 12 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Template Based Design

1 c l a s s iSenseRad ioMode l {
2 i n t e n a b l e r a d i o () {}
3 }

1 c l a s s ShawnRadioModel {
2 i n t e n a b l e r a d i o () {}
3 }

1 template<typename Radio P>
2 c l a s s A lgo r i thm
3 {
4 t yp ed e f Radio P Radio ;
5
6 i n t i n i t (Radio& r a d i o) {
7 r a d i o = &r a d i o ;
8 r a d i o −>e n a b l e r a d i o () ;
9 }

10
11 Radio : : s e l f p o i n t e r t r a d i o ;
12 }

1 Algor i thm<iSenseRad ioMode l> a l g r i t hm i s e n s e ;
2 Algor i thm<ShawnRadioModel> a l g r i t hm shawn ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 12 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Template Based Design

1 c l a s s iSenseRad ioMode l {
2 i n t e n a b l e r a d i o () {}
3 }

1 c l a s s ShawnRadioModel {
2 i n t e n a b l e r a d i o () {}
3 }

1 template<typename Radio P>
2 c l a s s A lgo r i thm
3 {
4 t yp ed e f Radio P Radio ;
5
6 i n t i n i t (Radio& r a d i o) {
7 r a d i o = &r a d i o ;
8 r a d i o −>e n a b l e r a d i o () ;
9 }

10
11 Radio : : s e l f p o i n t e r t r a d i o ;
12 }

1 Algor i thm<iSenseRad ioMode l> a l g r i t hm i s e n s e ;
2 Algor i thm<ShawnRadioModel> a l g r i t hm shawn ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 13 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstraction

Concept

Describes behaviour of components

E.g. “A Radio has a void send(char*) method”

Only documentation

Model

Actual class

Implements any number of concepts

E.g. A routing protocol may implement the radio concept

...so it can be used like one

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 14 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstraction

Concept

Describes behaviour of components

E.g. “A Radio has a void send(char*) method”

Only documentation

Model

Actual class

Implements any number of concepts

E.g. A routing protocol may implement the radio concept

...so it can be used like one

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 14 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstraction

Concept

Describes behaviour of components

E.g. “A Radio has a void send(char*) method”

Only documentation

Model

Actual class

Implements any number of concepts

E.g. A routing protocol may implement the radio concept

...so it can be used like one

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 14 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstraction

Concept

Describes behaviour of components

E.g. “A Radio has a void send(char*) method”

Only documentation

Model

Actual class

Implements any number of concepts

E.g. A routing protocol may implement the radio concept

...so it can be used like one

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 14 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstraction

Concept

Describes behaviour of components

E.g. “A Radio has a void send(char*) method”

Only documentation

Model

Actual class

Implements any number of concepts

E.g. A routing protocol may implement the radio concept

...so it can be used like one

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 14 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstraction

Concept

Describes behaviour of components

E.g. “A Radio has a void send(char*) method”

Only documentation

Model

Actual class

Implements any number of concepts

E.g. A routing protocol may implement the radio concept

...so it can be used like one

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 14 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstraction

Concept

Describes behaviour of components

E.g. “A Radio has a void send(char*) method”

Only documentation

Model

Actual class

Implements any number of concepts

E.g. A routing protocol may implement the radio concept

...so it can be used like one

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 14 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

How Usable Is The Template Approach?

There are other ways to provide abstraction
In C, one would usually abstract with function pointers
In C++ one would use virtual inheritance

How do they compare to the template approach?

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 15 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstracting with C function pointers

1 // C
2 t yp ed e f s t r u c t {
3 i n t (* v a l u e) (vo i d) ;
4 } Concept ;
5
6 i n t mode l va l u e () { r e t u r n 5 ; }
7 Concept model = { . v a l u e = &mode l va l u e } ;
8
9 vo i d a l g o r i t hm (Concept *c) {

10 // po i n t e r−>po i n t e r−>f u n c t i o n
11 i n t v = c−>v a l u e () ;
12 }
13
14 i n t main (i n t argc , cha r** a rgv) {
15 a l g o r i t hm (&model) ;
16 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 16 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstracting with virtual inheritance

1 // C++
2 c l a s s Concept {
3 p u b l i c :
4 v i r t u a l i n t v a l u e () ;
5 } ;
6
7 c l a s s Model : p u b l i c Concept {
8 p u b l i c :
9 i n t v a l u e () { r e t u r n 5 ; }

10 } ;
11
12 c l a s s A lgo r i thm {
13 p u b l i c :
14 // r e f e r e n c e−>v t ab l e−>f u n c t i o n
15 vo i d i n i t (Concept& c) { v = c . v a l u e () ; }
16 i n t v ;
17 } ;
18
19 i n t main (i n t argc , cha r** a rgv) {
20 Model m;
21 A lgo r i thm a ;
22 a . i n i t (m) ;
23 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 17 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Abstracting with templates

1 // C++
2
3 // concept ”Concept ” {
4 // has an ' i n t v a l u e () ' method
5 // }
6
7 c l a s s Model {
8 p u b l i c :
9 i n t v a l u e () { r e t u r n 5 ; }

10 } ;
11
12 template<typename Concept P>
13 c l a s s A lgo r i thm {
14 p u b l i c :
15 // r e f e r e n c e−>f u n c t i o n
16 vo i d i n i t (Concept P& c) { v = c . v a l u e () ; }
17 i n t v ;
18 } ;
19
20 i n t main (i n t argc , cha r** a rgv) {
21 Model m;
22 Algor i thm<Model> a ;
23 a . i n i t (m) ;
24 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 18 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Comparing the results

After compiling (for jennic, using ba-elf-gcc/ba-elf-g++) with -Os:
1 t e x t data bs s dec hex f i l e n ame
2 56 4 0 60 3c c . o
3 16 0 0 16 10 temp la t e . o
4 143 0 0 143 8 f v i r t u a l . o

�Template-based design is space efficient!
�Template-based design produces fast code!
�Template-based design is portable!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 19 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Abstraction With Templates

Comparing the results

After compiling (for jennic, using ba-elf-gcc/ba-elf-g++) with -Os:
1 t e x t data bs s dec hex f i l e n ame
2 56 4 0 60 3c c . o
3 16 0 0 16 10 temp la t e . o
4 143 0 0 143 8 f v i r t u a l . o

�Template-based design is space efficient!
�Template-based design produces fast code!
�Template-based design is portable!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 19 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Types Of Concepts

Algorithm Category
Concept

OS Facet
Concept

Data Structure
Concept

Algorithm
Model

(Implementation)

E
x
te
rn

a
l

In
te

rf
a
ce

In
te
rn

a
l In

te
rfa

ce
OS
Facet
Model

...

DS
Model

...

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 20 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Concept Organization

Lots of models
Lots of concepts
Models that behave similar should share concepts
E.g. A routing algorithm should be usable like a radio
For the user, both are just things that

Can receive messages
Can send messages to nodes
Only the neighborhood is different!

But a routing algorithm might have additional methods!
� We want a (loose) hierarchy of concepts
� We want to express concept inheritance
� We want to have “base concepts” for general things

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 21 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Concept Organization

Lots of models
Lots of concepts
Models that behave similar should share concepts
E.g. A routing algorithm should be usable like a radio
For the user, both are just things that

Can receive messages
Can send messages to nodes
Only the neighborhood is different!

But a routing algorithm might have additional methods!
� We want a (loose) hierarchy of concepts
� We want to express concept inheritance
� We want to have “base concepts” for general things

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 21 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Concept Organization

Lots of models
Lots of concepts
Models that behave similar should share concepts
E.g. A routing algorithm should be usable like a radio
For the user, both are just things that

Can receive messages
Can send messages to nodes
Only the neighborhood is different!

But a routing algorithm might have additional methods!
� We want a (loose) hierarchy of concepts
� We want to express concept inheritance
� We want to have “base concepts” for general things

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 21 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Concept Organization

Lots of models
Lots of concepts
Models that behave similar should share concepts
E.g. A routing algorithm should be usable like a radio
For the user, both are just things that

Can receive messages
Can send messages to nodes
Only the neighborhood is different!

But a routing algorithm might have additional methods!
� We want a (loose) hierarchy of concepts
� We want to express concept inheritance
� We want to have “base concepts” for general things

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 21 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Concept Organization

Lots of models
Lots of concepts
Models that behave similar should share concepts
E.g. A routing algorithm should be usable like a radio
For the user, both are just things that

Can receive messages
Can send messages to nodes
Only the neighborhood is different!

But a routing algorithm might have additional methods!
� We want a (loose) hierarchy of concepts
� We want to express concept inheritance
� We want to have “base concepts” for general things

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 21 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

The OsModel Facet

1 concept OsModel {
2 t yp ed e f . . . s i z e t ;
3 t y p ed e f . . . b l o c k d a t a t ; // ” byte”− l i k e type f o r b u f f e r s
4 enum Retu rnVa lue s { SUCCESS = . . . , ERR UNSPEC = . . . , . . . } ;
5
6 t y p ed e f . . . Radio ; // W i r e l e s s communicat ion f a c e t
7 t yp ed e f . . . Timer ;
8 t y p ed e f . . . Debug ; // Send debug messages
9

10 s t a t i c con s t End i ane s s e nd i a n e s s ; // WISELIB LITTLE ENDIAN or
WISELIB BIG ENDIAN

11 }

Holds platform properties (like endianess, size type, etc...)
Constants for return values

Include at least SUCCESS and ERR UNSPEC (unspecified error)
May/will include more, similar to errno

Holds types of other OS Facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 22 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Concept Inheritance

1 concept Rad ioFacet {
2 t yp ed e f . . . OsModel ;
3 t y p ed e f . . . n o d e i d t ;
4 t y p ed e f . . . b l o c k d a t a t ;
5 t y p ed e f . . . s i z e t ;
6
7 t y p ed e f . . . m e s s a g e i d t ;
8
9 enum Spe c i a lNode I d s {

10 BROADCAST ADDRESS = . . . ,
11 NULL NODE ID = . . .
12 } ;
13 enum R e s t r i c t i o n s {
14 MAX MESSAGE LENGTH = . . .
15 } ;
16
17 i n t e n a b l e r a d i o () ;
18 i n t d i s a b l e r a d i o () ;
19
20 i n t send (n o d e i d t r e c e i v e r ,

s i z e t l en , b l o c k d a t a t *

data) ;
21
22 n o d e i d t i d () ;
23
24 //
25 } ;

� We “derive” another
concept from this one:

1 concept Va r i ab l ePowerRad ioFace t
2 : p u b l i c Rad ioFacet
3 {
4 // Eve r y t h i n g i n Rad ioFacet p l u s :
5
6 t yp ed e f . . . TxPower ;
7
8 i n t s e t powe r (TxPower p) ;
9 TxPower power () ;

10 } ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 23 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Concept Inheritance

1 concept Rad ioFacet {
2 t yp ed e f . . . OsModel ;
3 t y p ed e f . . . n o d e i d t ;
4 t y p ed e f . . . b l o c k d a t a t ;
5 t y p ed e f . . . s i z e t ;
6
7 t y p ed e f . . . m e s s a g e i d t ;
8
9 enum Spe c i a lNode I d s {

10 BROADCAST ADDRESS = . . . ,
11 NULL NODE ID = . . .
12 } ;
13 enum R e s t r i c t i o n s {
14 MAX MESSAGE LENGTH = . . .
15 } ;
16
17 i n t e n a b l e r a d i o () ;
18 i n t d i s a b l e r a d i o () ;
19
20 i n t send (n o d e i d t r e c e i v e r ,

s i z e t l en , b l o c k d a t a t *

data) ;
21
22 n o d e i d t i d () ;
23
24 //
25 } ;

� We “derive” another
concept from this one:

1 concept Va r i ab l ePowerRad ioFace t
2 : p u b l i c Rad ioFacet
3 {
4 // Eve r y t h i n g i n Rad ioFacet p l u s :
5
6 t yp ed e f . . . TxPower ;
7
8 i n t s e t powe r (TxPower p) ;
9 TxPower power () ;

10 } ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 23 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Base Concepts

State
+READY
+NO_VALUE
+INACTIVE

+state(): int

Request
+typedef value_t

+operator()(): value_t

StateCallback
+READY
+NO_VALUE
+INACTIVE

+register_state_callback(): int

BasicAlgorithm

+init(...): int
+init(): int
+destruct(): int

Basic Algorithm Manual initialization & destruction (so the order
is defineable)

Request Produces values (can be polled with call-operator)
State Object is not guaranteed to be able to operate all the

time
StateCallback Object can inform its user about state changes

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 24 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Base Concepts

State
+READY
+NO_VALUE
+INACTIVE

+state(): int

Request
+typedef value_t

+operator()(): value_t

StateCallback
+READY
+NO_VALUE
+INACTIVE

+register_state_callback(): int

BasicAlgorithm

+init(...): int
+init(): int
+destruct(): int

SensorFacet

VirtualSensor

+set_value(value:value_t): int

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 25 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Base Concepts

State
+READY
+NO_VALUE
+INACTIVE

+state(): int

Request
+typedef value_t

+operator()(): value_t

StateCallback
+READY
+NO_VALUE
+INACTIVE

+register_state_callback(): int

BasicAlgorithm

+init(...): int
+init(): int
+destruct(): int

CallbackSensorFacet

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 26 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Base Concepts

State
+READY
+NO_VALUE
+INACTIVE

+state(): int

Request
+typedef value_t

+operator()(): value_t

StateCallback
+READY
+NO_VALUE
+INACTIVE

+register_state_callback(): int

BasicAlgorithm

+init(...): int
+init(): int
+destruct(): int

Position

Localization

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 27 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

Idea: Things with similar behaviour should share a concept!

Routing algorithms behave like radios
They send and receive data to other nodes

� Routing algorithms implement the Radio Concept
Localization algorithms produce a stream of values

So do sensors!
� Localization algorithms implement the Sensor Concept or the

CallbackSensor Concept

Etc. . .

Benefit

Say some algorithm uses a radio (i.e. transmits data)

We can pass a routing algorithm instead

And extend the algorithms functionality that way!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 28 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

Idea: Things with similar behaviour should share a concept!

Routing algorithms behave like radios
They send and receive data to other nodes

� Routing algorithms implement the Radio Concept
Localization algorithms produce a stream of values

So do sensors!
� Localization algorithms implement the Sensor Concept or the

CallbackSensor Concept

Etc. . .

Benefit

Say some algorithm uses a radio (i.e. transmits data)

We can pass a routing algorithm instead

And extend the algorithms functionality that way!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 28 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

Idea: Things with similar behaviour should share a concept!

Routing algorithms behave like radios
They send and receive data to other nodes

� Routing algorithms implement the Radio Concept
Localization algorithms produce a stream of values

So do sensors!
� Localization algorithms implement the Sensor Concept or the

CallbackSensor Concept

Etc. . .

Benefit

Say some algorithm uses a radio (i.e. transmits data)

We can pass a routing algorithm instead

And extend the algorithms functionality that way!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 28 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

Idea: Things with similar behaviour should share a concept!

Routing algorithms behave like radios
They send and receive data to other nodes

� Routing algorithms implement the Radio Concept
Localization algorithms produce a stream of values

So do sensors!
� Localization algorithms implement the Sensor Concept or the

CallbackSensor Concept

Etc. . .

Benefit

Say some algorithm uses a radio (i.e. transmits data)

We can pass a routing algorithm instead

And extend the algorithms functionality that way!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 28 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

iSense
Radio

Create arbitrary complex applications

Just by plugging together algorithms

Here:

1 “Physical” radio by iSense

2 AES-Encrypted node-to-node radio

3 Routing, all packets AES-encrypted
node-to-node

4 All packets AES-encrypted
node-to-node,
payload ECC encrypted end-to-end

...can be used like a single simple radio!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 29 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

iSense
Radio

AES
Secure
Radio

Create arbitrary complex applications

Just by plugging together algorithms

Here:

1 “Physical” radio by iSense

2 AES-Encrypted node-to-node radio

3 Routing, all packets AES-encrypted
node-to-node

4 All packets AES-encrypted
node-to-node,
payload ECC encrypted end-to-end

...can be used like a single simple radio!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 29 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

iSense
Radio

DSDV

AES
Secure
Radio

Create arbitrary complex applications

Just by plugging together algorithms

Here:

1 “Physical” radio by iSense

2 AES-Encrypted node-to-node radio

3 Routing, all packets AES-encrypted
node-to-node

4 All packets AES-encrypted
node-to-node,
payload ECC encrypted end-to-end

...can be used like a single simple radio!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 29 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

ECC

iSense
Radio

Secure
Radio

DSDV

AES
Secure
Radio

Create arbitrary complex applications

Just by plugging together algorithms

Here:

1 “Physical” radio by iSense

2 AES-Encrypted node-to-node radio

3 Routing, all packets AES-encrypted
node-to-node

4 All packets AES-encrypted
node-to-node,
payload ECC encrypted end-to-end

...can be used like a single simple radio!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 29 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Concept Architecture

Stackability

ECC

iSense
Radio

Secure
Radio

DSDV

AES
Secure
Radio

Create arbitrary complex applications

Just by plugging together algorithms

Here:

1 “Physical” radio by iSense

2 AES-Encrypted node-to-node radio

3 Routing, all packets AES-encrypted
node-to-node

4 All packets AES-encrypted
node-to-node,
payload ECC encrypted end-to-end

...can be used like a single simple radio!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 29 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Integration Demands

Wiselib components should be easily integrable into existing
code
We want and/or need the full power of the platform.
Examples:

Dynamically discover attached sensors
Fine-tuned device configuration

BUT

Sometimes you want to run the same application on different
platforms
Advanced hardware settings are relatively unimportant

Two different integration mechanisms needed!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 30 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Integration Demands

Wiselib components should be easily integrable into existing
code
We want and/or need the full power of the platform.
Examples:

Dynamically discover attached sensors
Fine-tuned device configuration

BUT

Sometimes you want to run the same application on different
platforms
Advanced hardware settings are relatively unimportant

Two different integration mechanisms needed!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 30 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Integration Demands

Wiselib components should be easily integrable into existing
code
We want and/or need the full power of the platform.
Examples:

Dynamically discover attached sensors
Fine-tuned device configuration

BUT

Sometimes you want to run the same application on different
platforms
Advanced hardware settings are relatively unimportant

Two different integration mechanisms needed!

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 30 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Integration Mechanisms

Direct Integration

� Just use whatever parts of the Wiselib you like

⊕ Retain full power of your platform

⊕ Good if you have existing code

	 Not portable

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 31 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Integration Mechanisms

Generic Application

� Write a Wiselib application class

⊕ Can be compiled for all Wiselib backends

	 You can only access the operating system through facets

	 But functionality will be limited to a common subset

E.g. you have to write “extremely portable” C++ (no
new/delete, RTTI, exceptions, . . .) in order to retain
portability

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 31 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Direct Integration

1 // . . .
2
3 vo i d iSenseDemoApp l i ca t i on : : boot (vo i d) {
4 o s . debug (”Wise l i bExamp le : : boot ”) ;
5 r o u t i n g . enab l e () ;
6 r o u t i n g . r e g r e c v c a l l b a c k<
7 iSenseDemoApp l i ca t i on ,
8 &iSenseDemoApp l i ca t i on : : r e c e i v e r o u t i n g me s s a g e >(t h i s) ;
9

10 o s . a l l o w s l e e p (f a l s e) ;
11 o s . a d d t a s k i n (i s e n s e : : Time (MILLISECONDS) , t h i s , 0) ;
12 }
13
14 // . . .

iSense specific code
Wiselib specific code

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 32 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Direct Integration

1 // . . .
2
3 vo i d iSenseDemoApp l i ca t i on : : boot (vo i d) {
4 o s . debug (”Wise l i bExamp le : : boot ”) ;
5 r o u t i n g . enab l e () ;
6 r o u t i n g . r e g r e c v c a l l b a c k<
7 iSenseDemoApp l i ca t i on ,
8 &iSenseDemoApp l i ca t i on : : r e c e i v e r o u t i n g me s s a g e >(t h i s) ;
9

10 o s . a l l o w s l e e p (f a l s e) ;
11 o s . a d d t a s k i n (i s e n s e : : Time (MILLISECONDS) , t h i s , 0) ;
12 }
13
14 // . . .

iSense specific code
Wiselib specific code

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 32 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Direct Integration

1 // . . .
2
3 vo i d iSenseDemoApp l i ca t i on : : boot (vo i d) {
4 o s . debug (”Wise l i bExamp le : : boot ”) ;
5 r o u t i n g . enab l e () ;
6 r o u t i n g . r e g r e c v c a l l b a c k<
7 iSenseDemoApp l i ca t i on ,
8 &iSenseDemoApp l i ca t i on : : r e c e i v e r o u t i n g me s s a g e >(t h i s) ;
9

10 o s . a l l o w s l e e p (f a l s e) ;
11 o s . a d d t a s k i n (i s e n s e : : Time (MILLISECONDS) , t h i s , 0) ;
12 }
13
14 // . . .

iSense specific code
Wiselib specific code

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 32 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Direct Integration

1 // . . .
2
3 vo i d iSenseDemoApp l i ca t i on : : boot (vo i d) {
4 o s . debug (”Wise l i bExamp le : : boot ”) ;
5 r o u t i n g . enab l e () ;
6 r o u t i n g . r e g r e c v c a l l b a c k<
7 iSenseDemoApp l i ca t i on ,
8 &iSenseDemoApp l i ca t i on : : r e c e i v e r o u t i n g me s s a g e >(t h i s) ;
9

10 o s . a l l o w s l e e p (f a l s e) ;
11 o s . a d d t a s k i n (i s e n s e : : Time (MILLISECONDS) , t h i s , 0) ;
12 }
13
14 // . . .

iSense specific code
Wiselib specific code

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 32 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Generic Application

1#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e . h”
2#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e t e s t i n g . h”
3 // . . .
4
5 t yp ed e f w i s e l i b : : PCOsModel Os ;
6 c l a s s DemoAppl i cat ion {
7 p u b l i c :
8 vo i d i n i t (Os : : AppMainParameter& amp) {
9 r a d i o = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (amp) ;

10 debug = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Debug> : : g e t f a c e t (amp) ;
11
12 a l g o r i t hm . i n i t () ;
13
14 r a d i o −>e n a b l e r a d i o () ;
15 debug −>debug (” I n i t i a l i z e d .\n”) ;
16 }
17
18 p r i v a t e :
19 Os : : Debug : : s e l f p o i n t e r t debug ;
20 Os : : Radio : : s e l f p o i n t e r t r a d i o ;
21 SomeAlgorithm a l g o r i t hm ;
22 } ;
23
24 w i s e l i b : : W i s e l i bApp l i c a t i o n<Os , DemoAppl icat ion> demo app ;
25 vo i d a p p l i c a t i o n ma i n (Os : : AppMainParameter& amp) {
26 demo app . i n i t (amp) ;
27 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 33 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Generic Application

1#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e . h”
2#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e t e s t i n g . h”
3 // . . .
4
5 t yp ed e f w i s e l i b : : PCOsModel Os ;
6 c l a s s DemoAppl i cat ion {
7 p u b l i c :
8 vo i d i n i t (Os : : AppMainParameter& amp) {
9 r a d i o = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (amp) ;

10 debug = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Debug> : : g e t f a c e t (amp) ;
11
12 a l g o r i t hm . i n i t () ;
13
14 r a d i o −>e n a b l e r a d i o () ;
15 debug −>debug (” I n i t i a l i z e d .\n”) ;
16 }
17
18 p r i v a t e :
19 Os : : Debug : : s e l f p o i n t e r t debug ;
20 Os : : Radio : : s e l f p o i n t e r t r a d i o ;
21 SomeAlgorithm a l g o r i t hm ;
22 } ;
23
24 w i s e l i b : : W i s e l i bApp l i c a t i o n<Os , DemoAppl icat ion> demo app ;
25 vo i d a p p l i c a t i o n ma i n (Os : : AppMainParameter& amp) {
26 demo app . i n i t (amp) ;
27 }

Platform selection
Ioannis Chatzigiannakis Pervasive Systems Lecture 21 33 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Generic Application

1#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e . h”
2#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e t e s t i n g . h”
3 // . . .
4
5 t yp ed e f w i s e l i b : : PCOsModel Os ;
6 c l a s s DemoAppl i cat ion {
7 p u b l i c :
8 vo i d i n i t (Os : : AppMainParameter& amp) {
9 r a d i o = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (amp) ;

10 debug = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Debug> : : g e t f a c e t (amp) ;
11
12 a l g o r i t hm . i n i t () ;
13
14 r a d i o −>e n a b l e r a d i o () ;
15 debug −>debug (” I n i t i a l i z e d .\n”) ;
16 }
17
18 p r i v a t e :
19 Os : : Debug : : s e l f p o i n t e r t debug ;
20 Os : : Radio : : s e l f p o i n t e r t r a d i o ;
21 SomeAlgorithm a l g o r i t hm ;
22 } ;
23
24 w i s e l i b : : W i s e l i bApp l i c a t i o n<Os , DemoAppl icat ion> demo app ;
25 vo i d a p p l i c a t i o n ma i n (Os : : AppMainParameter& amp) {
26 demo app . i n i t (amp) ;
27 }

Initialization: FacetProvider for OS facets / Manual for algorithms
Ioannis Chatzigiannakis Pervasive Systems Lecture 21 33 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Integrating The Wiselib

Generic Application

1#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e . h”
2#i n c l u d e ” e x t e r n a l i n t e r f a c e / e x t e r n a l i n t e r f a c e t e s t i n g . h”
3 // . . .
4
5 t yp ed e f w i s e l i b : : PCOsModel Os ;
6 c l a s s DemoAppl i cat ion {
7 p u b l i c :
8 vo i d i n i t (Os : : AppMainParameter& amp) {
9 r a d i o = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (amp) ;

10 debug = &w i s e l i b : : Fac e tP rov i d e r<Os , Os : : Debug> : : g e t f a c e t (amp) ;
11
12 a l g o r i t hm . i n i t () ;
13
14 r a d i o −>e n a b l e r a d i o () ;
15 debug −>debug (” I n i t i a l i z e d .\n”) ;
16 }
17
18 p r i v a t e :
19 Os : : Debug : : s e l f p o i n t e r t debug ;
20 Os : : Radio : : s e l f p o i n t e r t r a d i o ;
21 SomeAlgorithm a l g o r i t hm ;
22 } ;
23
24 w i s e l i b : : W i s e l i bApp l i c a t i o n<Os , DemoAppl icat ion> demo app ;
25 vo i d a p p l i c a t i o n ma i n (Os : : AppMainParameter& amp) {
26 demo app . i n i t (amp) ;
27 }

application main getting called by Wiselib ↔ OS adaptor
Ioannis Chatzigiannakis Pervasive Systems Lecture 21 33 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

What is a Facet?

Connection between algorithms and OS
OS Facets (Concepts)

OS Facet
Radio Facet
Timer Facet
...

For each supported OS at least one model per facet
iSenseOsModel
ContikiRadioModel
ShawnTimerModel
...

Possible to provide muliple models per facet
ContikiRimeRadioModel
Contiki6LowPanRadioModel
...

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 34 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

What is a Facet?

Connection between algorithms and OS
OS Facets (Concepts)

OS Facet
Radio Facet
Timer Facet
...

For each supported OS at least one model per facet
iSenseOsModel
ContikiRadioModel
ShawnTimerModel
...

Possible to provide muliple models per facet
ContikiRimeRadioModel
Contiki6LowPanRadioModel
...

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 34 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

What is a Facet?

Connection between algorithms and OS
OS Facets (Concepts)

OS Facet
Radio Facet
Timer Facet
...

For each supported OS at least one model per facet
iSenseOsModel
ContikiRadioModel
ShawnTimerModel
...

Possible to provide muliple models per facet
ContikiRimeRadioModel
Contiki6LowPanRadioModel
...

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 34 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

What is a Facet?

Connection between algorithms and OS
OS Facets (Concepts)

OS Facet
Radio Facet
Timer Facet
...

For each supported OS at least one model per facet
iSenseOsModel
ContikiRadioModel
ShawnTimerModel
...

Possible to provide muliple models per facet
ContikiRimeRadioModel
Contiki6LowPanRadioModel
...

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 34 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

OS Facet Overview

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 35 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

Exchangeability with Algorithms

Basic design issue: Flexibility
Pass an algorithm where a facet is expected
Examples

Pass routing algorithm where radio is expected
⇒ Enable flexible multihop neighborhoods
Pass time-synchronization algorithm where clock is expected
⇒ Enable system-wide time basis
Pass localization algorithm where position is expected
⇒ Only some nodes in the network need to know their position
Pass routing-based debug model where debug facet is expected
⇒ Debug nodes that are not connected to a gateway position

Advantage: Totally transparent for algorithm

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 36 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

Exchangeability with Algorithms

Basic design issue: Flexibility
Pass an algorithm where a facet is expected
Examples

Pass routing algorithm where radio is expected
⇒ Enable flexible multihop neighborhoods
Pass time-synchronization algorithm where clock is expected
⇒ Enable system-wide time basis
Pass localization algorithm where position is expected
⇒ Only some nodes in the network need to know their position
Pass routing-based debug model where debug facet is expected
⇒ Debug nodes that are not connected to a gateway position

Advantage: Totally transparent for algorithm

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 36 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

Exchangeability with Algorithms

Basic design issue: Flexibility
Pass an algorithm where a facet is expected
Examples

Pass routing algorithm where radio is expected
⇒ Enable flexible multihop neighborhoods
Pass time-synchronization algorithm where clock is expected
⇒ Enable system-wide time basis
Pass localization algorithm where position is expected
⇒ Only some nodes in the network need to know their position
Pass routing-based debug model where debug facet is expected
⇒ Debug nodes that are not connected to a gateway position

Advantage: Totally transparent for algorithm

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 36 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

Exchangeability with Algorithms

Basic design issue: Flexibility
Pass an algorithm where a facet is expected
Examples

Pass routing algorithm where radio is expected
⇒ Enable flexible multihop neighborhoods
Pass time-synchronization algorithm where clock is expected
⇒ Enable system-wide time basis
Pass localization algorithm where position is expected
⇒ Only some nodes in the network need to know their position
Pass routing-based debug model where debug facet is expected
⇒ Debug nodes that are not connected to a gateway position

Advantage: Totally transparent for algorithm

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 36 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

Exchangeability with Algorithms

Basic design issue: Flexibility
Pass an algorithm where a facet is expected
Examples

Pass routing algorithm where radio is expected
⇒ Enable flexible multihop neighborhoods
Pass time-synchronization algorithm where clock is expected
⇒ Enable system-wide time basis
Pass localization algorithm where position is expected
⇒ Only some nodes in the network need to know their position
Pass routing-based debug model where debug facet is expected
⇒ Debug nodes that are not connected to a gateway position

Advantage: Totally transparent for algorithm

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 36 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

Exchangeability with Algorithms

Basic design issue: Flexibility
Pass an algorithm where a facet is expected
Examples

Pass routing algorithm where radio is expected
⇒ Enable flexible multihop neighborhoods
Pass time-synchronization algorithm where clock is expected
⇒ Enable system-wide time basis
Pass localization algorithm where position is expected
⇒ Only some nodes in the network need to know their position
Pass routing-based debug model where debug facet is expected
⇒ Debug nodes that are not connected to a gateway position

Advantage: Totally transparent for algorithm

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 36 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Introduction

Exchangeability with Algorithms

Basic design issue: Flexibility
Pass an algorithm where a facet is expected
Examples

Pass routing algorithm where radio is expected
⇒ Enable flexible multihop neighborhoods
Pass time-synchronization algorithm where clock is expected
⇒ Enable system-wide time basis
Pass localization algorithm where position is expected
⇒ Only some nodes in the network need to know their position
Pass routing-based debug model where debug facet is expected
⇒ Debug nodes that are not connected to a gateway position

Advantage: Totally transparent for algorithm

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 36 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

The OS Facet

1 concept OsFacet {
2 t yp ed e f . . . s i z e t ;
3 t y p ed e f . . . b l o c k d a t a t ; // ” byte”− l i k e type f o r b u f f e r s
4 enum Retu rnVa lue s { SUCCESS , EUNSPEC, . . . } ; // De f i n e c on s t a n t s f o r r e t u r n

v a l u e s
5
6 t yp ed e f . . . Radio ; // W i r e l e s s communicat ion f a c e t
7 t yp ed e f . . . Timer ;
8 t y p ed e f . . . Debug ; // Send debug messages
9

10 s t a t i c con s t End i ane s s e nd i a n e s s ; // WISELIB LITTLE ENDIAN or
WISELIB BIG ENDIAN

11 }

Only facet which does not need to be instantiated
Provide type definitions and constants
Platform properties (endianess, size type, ...)
Constants for return values

Include at least SUCCESS and ERR UNSPEC (unspecified error)
May/will include more, similar to errno

Default types for basic OS Facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 37 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

The OS Facet

1 concept OsFacet {
2 t yp ed e f . . . s i z e t ;
3 t y p ed e f . . . b l o c k d a t a t ; // ” byte”− l i k e type f o r b u f f e r s
4 enum Retu rnVa lue s { SUCCESS , EUNSPEC, . . . } ; // De f i n e c on s t a n t s f o r r e t u r n

v a l u e s
5
6 t yp ed e f . . . Radio ; // W i r e l e s s communicat ion f a c e t
7 t yp ed e f . . . Timer ;
8 t y p ed e f . . . Debug ; // Send debug messages
9

10 s t a t i c con s t End i ane s s e nd i a n e s s ; // WISELIB LITTLE ENDIAN or
WISELIB BIG ENDIAN

11 }

Only facet which does not need to be instantiated
Provide type definitions and constants
Platform properties (endianess, size type, ...)
Constants for return values

Include at least SUCCESS and ERR UNSPEC (unspecified error)
May/will include more, similar to errno

Default types for basic OS Facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 37 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

The OS Facet

1 concept OsFacet {
2 t yp ed e f . . . s i z e t ;
3 t y p ed e f . . . b l o c k d a t a t ; // ” byte”− l i k e type f o r b u f f e r s
4 enum Retu rnVa lue s { SUCCESS , EUNSPEC, . . . } ; // De f i n e c on s t a n t s f o r r e t u r n

v a l u e s
5
6 t yp ed e f . . . Radio ; // W i r e l e s s communicat ion f a c e t
7 t yp ed e f . . . Timer ;
8 t y p ed e f . . . Debug ; // Send debug messages
9

10 s t a t i c con s t End i ane s s e nd i a n e s s ; // WISELIB LITTLE ENDIAN or
WISELIB BIG ENDIAN

11 }

Only facet which does not need to be instantiated
Provide type definitions and constants
Platform properties (endianess, size type, ...)
Constants for return values

Include at least SUCCESS and ERR UNSPEC (unspecified error)
May/will include more, similar to errno

Default types for basic OS Facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 37 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

The OS Facet

1 concept OsFacet {
2 t yp ed e f . . . s i z e t ;
3 t y p ed e f . . . b l o c k d a t a t ; // ” byte”− l i k e type f o r b u f f e r s
4 enum Retu rnVa lue s { SUCCESS , EUNSPEC, . . . } ; // De f i n e c on s t a n t s f o r r e t u r n

v a l u e s
5
6 t yp ed e f . . . Radio ; // W i r e l e s s communicat ion f a c e t
7 t yp ed e f . . . Timer ;
8 t y p ed e f . . . Debug ; // Send debug messages
9

10 s t a t i c con s t End i ane s s e nd i a n e s s ; // WISELIB LITTLE ENDIAN or
WISELIB BIG ENDIAN

11 }

Only facet which does not need to be instantiated
Provide type definitions and constants
Platform properties (endianess, size type, ...)
Constants for return values

Include at least SUCCESS and ERR UNSPEC (unspecified error)
May/will include more, similar to errno

Default types for basic OS Facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 37 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

The OS Facet

1 concept OsFacet {
2 t yp ed e f . . . s i z e t ;
3 t y p ed e f . . . b l o c k d a t a t ; // ” byte”− l i k e type f o r b u f f e r s
4 enum Retu rnVa lue s { SUCCESS , EUNSPEC, . . . } ; // De f i n e c on s t a n t s f o r r e t u r n

v a l u e s
5
6 t yp ed e f . . . Radio ; // W i r e l e s s communicat ion f a c e t
7 t yp ed e f . . . Timer ;
8 t y p ed e f . . . Debug ; // Send debug messages
9

10 s t a t i c con s t End i ane s s e nd i a n e s s ; // WISELIB LITTLE ENDIAN or
WISELIB BIG ENDIAN

11 }

Only facet which does not need to be instantiated
Provide type definitions and constants
Platform properties (endianess, size type, ...)
Constants for return values

Include at least SUCCESS and ERR UNSPEC (unspecified error)
May/will include more, similar to errno

Default types for basic OS Facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 37 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (1 of 4)

Design issues
Abstraction to underlying hardware radio
Complex routing algorithms
Virtual radio providing virtual ids

Send messages to other nodes
Callback registration for received messsages
Provide node id (and its type!)

Node id type is defined per radio
E.g., provide IP addresses, but run on 16-bit addresses
Only restriction: Be passed to sizeof()

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 38 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (1 of 4)

Design issues
Abstraction to underlying hardware radio
Complex routing algorithms
Virtual radio providing virtual ids

Send messages to other nodes
Callback registration for received messsages
Provide node id (and its type!)

Node id type is defined per radio
E.g., provide IP addresses, but run on 16-bit addresses
Only restriction: Be passed to sizeof()

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 38 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (1 of 4)

Design issues
Abstraction to underlying hardware radio
Complex routing algorithms
Virtual radio providing virtual ids

Send messages to other nodes
Callback registration for received messsages
Provide node id (and its type!)

Node id type is defined per radio
E.g., provide IP addresses, but run on 16-bit addresses
Only restriction: Be passed to sizeof()

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 38 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (1 of 4)

Design issues
Abstraction to underlying hardware radio
Complex routing algorithms
Virtual radio providing virtual ids

Send messages to other nodes
Callback registration for received messsages
Provide node id (and its type!)

Node id type is defined per radio
E.g., provide IP addresses, but run on 16-bit addresses
Only restriction: Be passed to sizeof()

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 38 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (2 of 4)

1 concept Rad ioFacet {
2 t yp ed e f . . . n o d e i d t ;
3 t y p ed e f . . . b l o c k d a t a t ;
4 t y p ed e f . . . s i z e t ;
5 t y p ed e f . . . m e s s a g e i d t ;

Ability to provide arbitrary node ID types

Message ID type to identify received messages

9 enum Spe c i a lNode I d s { BROADCAST ADDRESS = . . . , NULL NODE ID = . . . } ;
10 enum R e s t r i c t i o n s { MAX MESSAGE LENGTH = . . . } ;

Basic constants for broadcasting and unknown nodes

Maximal message length defined per radio

11 i n t e n a b l e r a d i o () ;
12 i n t d i s a b l e r a d i o () ;

Turn on/off radio

Return SUCCESS or error code if failed
Ioannis Chatzigiannakis Pervasive Systems Lecture 21 39 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (2 of 4)

1 concept Rad ioFacet {
2 t yp ed e f . . . n o d e i d t ;
3 t y p ed e f . . . b l o c k d a t a t ;
4 t y p ed e f . . . s i z e t ;
5 t y p ed e f . . . m e s s a g e i d t ;

Ability to provide arbitrary node ID types

Message ID type to identify received messages

9 enum Spe c i a lNode I d s { BROADCAST ADDRESS = . . . , NULL NODE ID = . . . } ;
10 enum R e s t r i c t i o n s { MAX MESSAGE LENGTH = . . . } ;

Basic constants for broadcasting and unknown nodes

Maximal message length defined per radio

11 i n t e n a b l e r a d i o () ;
12 i n t d i s a b l e r a d i o () ;

Turn on/off radio

Return SUCCESS or error code if failed
Ioannis Chatzigiannakis Pervasive Systems Lecture 21 39 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (2 of 4)

1 concept Rad ioFacet {
2 t yp ed e f . . . n o d e i d t ;
3 t y p ed e f . . . b l o c k d a t a t ;
4 t y p ed e f . . . s i z e t ;
5 t y p ed e f . . . m e s s a g e i d t ;

Ability to provide arbitrary node ID types

Message ID type to identify received messages

9 enum Spe c i a lNode I d s { BROADCAST ADDRESS = . . . , NULL NODE ID = . . . } ;
10 enum R e s t r i c t i o n s { MAX MESSAGE LENGTH = . . . } ;

Basic constants for broadcasting and unknown nodes

Maximal message length defined per radio

11 i n t e n a b l e r a d i o () ;
12 i n t d i s a b l e r a d i o () ;

Turn on/off radio

Return SUCCESS or error code if failed
Ioannis Chatzigiannakis Pervasive Systems Lecture 21 39 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (3 of 4)

13 i n t send (n o d e i d t r e c e i v e r , s i z e t l en , b l o c k d a t a t *data) ;

Send message to receiver (either unicast or broadcast)

Return SUCCESS or error code if failed

14 n o d e i d t i d () ;

Return node id: Can be of arbitrary type

15 template<c l a s s T, vo i d (T : : * TMethod) (nod e i d t , s i z e t , b l o c k d a t a t *)>
16 i n t r e g r e c v c a l l b a c k (T * ob j p n t) ;
17
18 i n t u n r e g r e c v c a l l b a c k (i n t c i d) ;
19 }

Callback registration: Return callback id (or -1 if failed)

Pass callback id to unregister callback

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 40 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (3 of 4)

13 i n t send (n o d e i d t r e c e i v e r , s i z e t l en , b l o c k d a t a t *data) ;

Send message to receiver (either unicast or broadcast)

Return SUCCESS or error code if failed

14 n o d e i d t i d () ;

Return node id: Can be of arbitrary type

15 template<c l a s s T, vo i d (T : : * TMethod) (nod e i d t , s i z e t , b l o c k d a t a t *)>
16 i n t r e g r e c v c a l l b a c k (T * ob j p n t) ;
17
18 i n t u n r e g r e c v c a l l b a c k (i n t c i d) ;
19 }

Callback registration: Return callback id (or -1 if failed)

Pass callback id to unregister callback

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 40 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (3 of 4)

13 i n t send (n o d e i d t r e c e i v e r , s i z e t l en , b l o c k d a t a t *data) ;

Send message to receiver (either unicast or broadcast)

Return SUCCESS or error code if failed

14 n o d e i d t i d () ;

Return node id: Can be of arbitrary type

15 template<c l a s s T, vo i d (T : : * TMethod) (nod e i d t , s i z e t , b l o c k d a t a t *)>
16 i n t r e g r e c v c a l l b a c k (T * ob j p n t) ;
17
18 i n t u n r e g r e c v c a l l b a c k (i n t c i d) ;
19 }

Callback registration: Return callback id (or -1 if failed)

Pass callback id to unregister callback

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 40 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (4 of 4) - Derived Concepts

VariablePowerRadio
1 t yp ed e f . . . TxPower ;
2
3 i n t s e t powe r (TxPower p) ;
4 TxPower power () ;

Set transmission power
Read out TX power to work on value (increment, decrement, ...)

ExtendedDataRadio
1 t yp ed e f . . . ExtendedData ;
2
3 template<c l a s s T, vo i d (T : : * TMethod) (nod e i d t , s i z e t ,

b l o c k d a t a t * ,
4 ExtendedData&)>
5 i n t r e g r e c v c a l l b a c k (T * ob j p n t) ;

Register receive method with additional parameter
Extended data can be LQI, RSSI, ...
→ Again a concept with different ExtendedData-models

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 41 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Radio Facet (4 of 4) - Derived Concepts

VariablePowerRadio
1 t yp ed e f . . . TxPower ;
2
3 i n t s e t powe r (TxPower p) ;
4 TxPower power () ;

Set transmission power
Read out TX power to work on value (increment, decrement, ...)

ExtendedDataRadio
1 t yp ed e f . . . ExtendedData ;
2
3 template<c l a s s T, vo i d (T : : * TMethod) (nod e i d t , s i z e t ,

b l o c k d a t a t * ,
4 ExtendedData&)>
5 i n t r e g r e c v c a l l b a c k (T * ob j p n t) ;

Register receive method with additional parameter
Extended data can be LQI, RSSI, ...
→ Again a concept with different ExtendedData-models

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 41 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Timer Facet

Event mechanism
Wait for given time, then call me back...

1 concept TimerFacet {
2 t yp ed e f . . . m i l l i s t ;
3
4 template<typename T, vo i d (T : : * TMethod) (vo i d *)>
5 i n t s e t t i m e r (m i l l i s t m i l l i s , T * ob j pn t , v o i d * u s e r d a t a) ;
6 }

Time given in milliseconds

Callback registration: Call passed method in given time

userdata is passed on callback

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 42 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Timer Facet

Event mechanism
Wait for given time, then call me back...

1 concept TimerFacet {
2 t yp ed e f . . . m i l l i s t ;
3
4 template<typename T, vo i d (T : : * TMethod) (vo i d *)>
5 i n t s e t t i m e r (m i l l i s t m i l l i s , T * ob j pn t , v o i d * u s e r d a t a) ;
6 }

Time given in milliseconds

Callback registration: Call passed method in given time

userdata is passed on callback

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 42 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Debug/Logging Facet

Write out debug or logging data
Equivalent to printf()

1 concept DebugFacet
2 {
3 vo i d debug (con s t cha r *msg , . . .) ;
4 }

Only one method: debug(...)

Usage as printf()

⇒ debug ->debug(”print an int: %d”, my int);

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 43 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Debug/Logging Facet

Write out debug or logging data
Equivalent to printf()

1 concept DebugFacet
2 {
3 vo i d debug (con s t cha r *msg , . . .) ;
4 }

Only one method: debug(...)

Usage as printf()

⇒ debug ->debug(”print an int: %d”, my int);

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 43 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Clock Facet

Access to system time
Type defined by model (platform dependent)

1 concept C lockFace t {
2 t yp ed e f . . . t im e t ;
3
4 enum C l o c kSp e c i f i cDa t a { CLOCKS PER SEC = . . . , } ;
5
6 t ime t t ime () ;
7 }

Only one method: time()

Number of clock tics per second (CLOCKS PER SEC):
→ Deal with platform independent time calculations

Derived Concept: Settable Clock facet
1 i n t s e t t im e (t ime t t ime) ;

Set time (e.g., for time-synchronization)
Currently only implemented for iSense

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 44 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Clock Facet

Access to system time
Type defined by model (platform dependent)

1 concept C lockFace t {
2 t yp ed e f . . . t im e t ;
3
4 enum C l o c kSp e c i f i cDa t a { CLOCKS PER SEC = . . . , } ;
5
6 t ime t t ime () ;
7 }

Only one method: time()

Number of clock tics per second (CLOCKS PER SEC):
→ Deal with platform independent time calculations

Derived Concept: Settable Clock facet
1 i n t s e t t im e (t ime t t ime) ;

Set time (e.g., for time-synchronization)
Currently only implemented for iSense

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 44 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Clock Facet

Access to system time
Type defined by model (platform dependent)

1 concept C lockFace t {
2 t yp ed e f . . . t im e t ;
3
4 enum C l o c kSp e c i f i cDa t a { CLOCKS PER SEC = . . . , } ;
5
6 t ime t t ime () ;
7 }

Only one method: time()

Number of clock tics per second (CLOCKS PER SEC):
→ Deal with platform independent time calculations

Derived Concept: Settable Clock facet
1 i n t s e t t im e (t ime t t ime) ;

Set time (e.g., for time-synchronization)
Currently only implemented for iSense

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 44 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Important Facets

Clock Facet

Access to system time
Type defined by model (platform dependent)

1 concept C lockFace t {
2 t yp ed e f . . . t im e t ;
3
4 enum C l o c kSp e c i f i cDa t a { CLOCKS PER SEC = . . . , } ;
5
6 t ime t t ime () ;
7 }

Only one method: time()

Number of clock tics per second (CLOCKS PER SEC):
→ Deal with platform independent time calculations

Derived Concept: Settable Clock facet
1 i n t s e t t im e (t ime t t ime) ;

Set time (e.g., for time-synchronization)
Currently only implemented for iSense

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 44 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Facet Structure

Construction of facets system dependent
Shawn: A facet needs to know to which processor it belongs
iSense: Require access to isense::Os

Contiki: Only calls to C functions

Each system with own constructors
Generic Wiselib Application

Construction must be hidden for user
Solution: Template based facet provider

Direct Integration
Facets are known to user
Directly initialize facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 45 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Facet Structure

Construction of facets system dependent
Shawn: A facet needs to know to which processor it belongs
iSense: Require access to isense::Os

Contiki: Only calls to C functions

Each system with own constructors
Generic Wiselib Application

Construction must be hidden for user
Solution: Template based facet provider

Direct Integration
Facets are known to user
Directly initialize facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 45 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Facet Structure

Construction of facets system dependent
Shawn: A facet needs to know to which processor it belongs
iSense: Require access to isense::Os

Contiki: Only calls to C functions

Each system with own constructors
Generic Wiselib Application

Construction must be hidden for user
Solution: Template based facet provider

Direct Integration
Facets are known to user
Directly initialize facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 45 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Facet Structure

Construction of facets system dependent
Shawn: A facet needs to know to which processor it belongs
iSense: Require access to isense::Os

Contiki: Only calls to C functions

Each system with own constructors
Generic Wiselib Application

Construction must be hidden for user
Solution: Template based facet provider

Direct Integration
Facets are known to user
Directly initialize facets

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 45 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Generic Wiselib Application (1 of 2)

Template FacetProvider

→ Internals in Session 4
1 template<typename OsModel P ,
2 typename Facet P>
3 c l a s s Fa c e tP r o v i d e r {
4 s t a t i c Facet& g e t f a c e t (AppMainParameter& os) ;
5 }

Template specialization for different platforms
Method get facet() returns reference to facet
1 vo i d i n i t (Os : : AppMainParameter& va l u e)
2 {
3 r a d i o = &w i s e l i b : : Face tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (

v a l u e) ;
4 }
5 . . .
6 Os : : Radio : : s e l f p o i n t e r t r a d i o ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 46 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Generic Wiselib Application (1 of 2)

Template FacetProvider

→ Internals in Session 4
1 template<typename OsModel P ,
2 typename Facet P>
3 c l a s s Fa c e tP r o v i d e r {
4 s t a t i c Facet& g e t f a c e t (AppMainParameter& os) ;
5 }

Template specialization for different platforms
Method get facet() returns reference to facet
1 vo i d i n i t (Os : : AppMainParameter& va l u e)
2 {
3 r a d i o = &w i s e l i b : : Face tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (

v a l u e) ;
4 }
5 . . .
6 Os : : Radio : : s e l f p o i n t e r t r a d i o ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 46 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Generic Wiselib Application (1 of 2)

Template FacetProvider

→ Internals in Session 4
1 template<typename OsModel P ,
2 typename Facet P>
3 c l a s s Fa c e tP r o v i d e r {
4 s t a t i c Facet& g e t f a c e t (AppMainParameter& os) ;
5 }

Template specialization for different platforms
Method get facet() returns reference to facet
1 vo i d i n i t (Os : : AppMainParameter& va l u e)
2 {
3 r a d i o = &w i s e l i b : : Face tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (

v a l u e) ;
4 }
5 . . .
6 Os : : Radio : : s e l f p o i n t e r t r a d i o ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 46 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Generic Wiselib Application (2 of 2)

Special Issue: The self pointer t
1 vo i d i n i t (Os : : AppMainParameter& va l u e)
2 {
3 r a d i o = &w i s e l i b : : Face tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (

v a l u e) ;
4 }
5 . . .
6 Os : : Radio : : s e l f p o i n t e r t r a d i o ;

Each facet/algorithm provides self pointer t

Access via radio ->enable radio()

Usually, this is just a pointer
→ typedef self t* self pointer t

For C systems, this can be used to optimize code space

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 47 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Generic Wiselib Application (2 of 2)

Special Issue: The self pointer t
1 vo i d i n i t (Os : : AppMainParameter& va l u e)
2 {
3 r a d i o = &w i s e l i b : : Face tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (

v a l u e) ;
4 }
5 . . .
6 Os : : Radio : : s e l f p o i n t e r t r a d i o ;

Each facet/algorithm provides self pointer t

Access via radio ->enable radio()

Usually, this is just a pointer
→ typedef self t* self pointer t

For C systems, this can be used to optimize code space

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 47 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Generic Wiselib Application (2 of 2)

Special Issue: The self pointer t
1 vo i d i n i t (Os : : AppMainParameter& va l u e)
2 {
3 r a d i o = &w i s e l i b : : Face tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (

v a l u e) ;
4 }
5 . . .
6 Os : : Radio : : s e l f p o i n t e r t r a d i o ;

Each facet/algorithm provides self pointer t

Access via radio ->enable radio()

Usually, this is just a pointer
→ typedef self t* self pointer t

For C systems, this can be used to optimize code space

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 47 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Generic Wiselib Application (2 of 2)

Special Issue: The self pointer t
1 vo i d i n i t (Os : : AppMainParameter& va l u e)
2 {
3 r a d i o = &w i s e l i b : : Face tP rov i d e r<Os , Os : : Radio > : : g e t f a c e t (

v a l u e) ;
4 }
5 . . .
6 Os : : Radio : : s e l f p o i n t e r t r a d i o ;

Each facet/algorithm provides self pointer t

Access via radio ->enable radio()

Usually, this is just a pointer
→ typedef self t* self pointer t

For C systems, this can be used to optimize code space

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 47 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

iSense Application

iSense facets usually expect isense::Os in constructor
1 template<typename OsModel P>
2 c l a s s iSenseRad ioMode l
3 : p u b l i c i s e n s e : : R e c e i v e r
4 {
5 iSenseRad ioMode l (i s e n s e : : Os& os)
6 : o s (os)
7 {
8 o s . d i s p a t c h e r () . a d d r e c e i v e r (t h i s) ;
9 }

10 . . .
11 }

Directly used as members
1 #i n c l u d e ” e x t e r n a l i n t e r f a c e / i s e n s e / i s e n s e r a d i o . h”
2 t y p ed e f w i s e l i b : : iSenseOsModel Os ;
3
4 c l a s s iSenseDemoApp l i ca t i on {
5
6 iSenseDemoApp l i c a t i on (i s e n s e : : Os& os)
7 : i s e n s e : : A p p l i c a t i o n (os) ,
8 r a d i o (os)
9 {}

10
11 Os : : Radio r a d i o ;
12 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 48 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

iSense Application

iSense facets usually expect isense::Os in constructor
1 template<typename OsModel P>
2 c l a s s iSenseRad ioMode l
3 : p u b l i c i s e n s e : : R e c e i v e r
4 {
5 iSenseRad ioMode l (i s e n s e : : Os& os)
6 : o s (os)
7 {
8 o s . d i s p a t c h e r () . a d d r e c e i v e r (t h i s) ;
9 }

10 . . .
11 }

Directly used as members
1 #i n c l u d e ” e x t e r n a l i n t e r f a c e / i s e n s e / i s e n s e r a d i o . h”
2 t y p ed e f w i s e l i b : : iSenseOsModel Os ;
3
4 c l a s s iSenseDemoApp l i ca t i on {
5
6 iSenseDemoApp l i c a t i on (i s e n s e : : Os& os)
7 : i s e n s e : : A p p l i c a t i o n (os) ,
8 r a d i o (os)
9 {}

10
11 Os : : Radio r a d i o ;
12 }

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 48 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Shawn Application

Shawn facets usually expect ShawnOs in constructor
→ Defined in external interface/shawn/shawn types.h
1 template<typename OsModel P>
2 c l a s s ShawnRadioModel {
3 ShawnRadioModel (ShawnOs& os)
4 : o s (os)
5 {}
6 . . .
7 ShawnOs& os ;

Directly used as members
1 #i n c l u d e ” e x t e r n a l i n t e r f a c e /shawn/ shawn rad i o . h”
2 t y p ed e f w i s e l i b : : ShawnOsModel Os ;
3
4 c l a s s W i s e l i bExamp l eP ro c e s s o r
5 : p u b l i c v i r t u a l E x t I f a c eP r o c e s s o r {
6
7 Wi s e l i bExamp l eP roc e s s o r ()
8 : w i s e l i b r a d i o (o s)
9 {}

10
11 vo i d boot () { o s . p roc = t h i s ; }
12
13 ShawnOs o s ;
14 Os : : Radio w i s e l i b r a d i o ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 49 / 49

Motivation Design Of The Wiselib Hardware Abstraction with OS Facets

Facet Instantiation

Shawn Application

Shawn facets usually expect ShawnOs in constructor
→ Defined in external interface/shawn/shawn types.h
1 template<typename OsModel P>
2 c l a s s ShawnRadioModel {
3 ShawnRadioModel (ShawnOs& os)
4 : o s (os)
5 {}
6 . . .
7 ShawnOs& os ;

Directly used as members
1 #i n c l u d e ” e x t e r n a l i n t e r f a c e /shawn/ shawn rad i o . h”
2 t y p ed e f w i s e l i b : : ShawnOsModel Os ;
3
4 c l a s s W i s e l i bExamp l eP ro c e s s o r
5 : p u b l i c v i r t u a l E x t I f a c eP r o c e s s o r {
6
7 Wi s e l i bExamp l eP roc e s s o r ()
8 : w i s e l i b r a d i o (o s)
9 {}

10
11 vo i d boot () { o s . p roc = t h i s ; }
12
13 ShawnOs o s ;
14 Os : : Radio w i s e l i b r a d i o ;

Ioannis Chatzigiannakis Pervasive Systems Lecture 21 49 / 49

