Pervasive Systems

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 4: Delay-Tolerant Networking

IP-based Network Assumptions

- End-to-end RTT is not terribly large.
 - A few seconds at the very most typically less than 500ms,
 - window-based flow/congestion control works.
- Some path exists between endpoints.
 - Routing finds single "best" existing route.
- E2E Reliability using ARQ works well.
 - True for low loss rates (under 2% or so).
- Packet switching is the right abstraction.
 - Internet/IP makes packet switching interoperable.

Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 1 / 41	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 2 / 41
Delay Tolerant Networking	Routing Protocols	Deployments	Delay Tolerant Networking	Routing Protocols	Deployments
0.0000000000	000000000000000000	00000000	00•00000000	000000000000000000	00000000

ntroduction

Typical IP-based Network E2E Path

Non-IP-based Networks

- Stochastic mobility
 - Military/tactical networks
 - Mobile routers w/disconnection (e.g. ZebraNet)
- Periodic/predictable mobility
 - Spacecraft communications
 - Busses, mail trucks, police cars, etc. (InfoStations)
- "Exotic" links
 - Deep space [40+ min RTT; episodic connectivity
 - Underwater [acoustics: low capacity, high error rates & latencies]

loannis Chatzigiannakis Pervasive Systems Lecture 4 3 / 41 Ioannis Chatzigiannakis Pervasive Systems Lecture 4 4 / 41

Delay Tolerant Networking Delay Tolerant Networking Routing Protocols Routing Protocols 0000000000 000000000000

Delay-Tolerant Network E2E Path

New Challenges

- Very Large Delays
 - Natural delay could be seconds to minutes
 - If disconnected, may be (effectively) much longer
- Intermittent/Scheduled/Opportunistic Links
 - Scheduled transfers can save power and help congestion; scheduling common for esoteric links
- High Link Error Rates / Low Capacity
 - RF noise, light or acoustic interference
- Different Network Architectures
 - Many specialized networks won't/can't ever run IP

Ioannis Chatzigiannakis Delay Tolerant Networking

Routing Protocols

Lecture 4 5 / 41

Ioannis Chatzigiannakis Delay Tolerant Networking

Pervasive Systems Routing Protocols

How to Address these issues?

- Some problems surmountable using Internet/IP
 - "cover up" the link problems using PEPs
 - Mostly used at "edges", not so much for transit
- Performance Enhancing Proxies (PEPs):
 - Do "something" in the data stream causing endpoint (TCP/IP) systems to not notice there are problems
 - Lots of issues with transparency security, operation with asymmetric routing, etc.
- Some environments never have an E2E path
 - Consider an approach tolerating disconnection, etc...

Delay and Disruption Tolerant Networking (DTN)

- Support interoperability across radically heterogeneous networks
- Acceptable performance in high loss/delay/error/disconnected environments
- Decent performance for low loss/delay/errors
- Environments without continuous network connectivity.
- For challenged environments: remote sensors in Antarctica, a spacecraft in deep space, submersible vessels etc.
- For communication during Disasters and Emergency.
- Communication is asynchronous by nature.

Ioannis Chatzigiannakis Ioannis Chatzigiannakis Lecture 4 8 / 41 Pervasive Systems Lecture 4 7 / 41 Pervasive Systems

Delay Tolerant Networking Delay Tolerant Networking Example: Communication during Disasters and Emergency

Delay-Tolerant Network Store & Forward Approach

Ioannis Chatzigiannakis Pervasive Systems Lecture 4 9 / 41 Ioannis Chatzigiannakis Pervasive Systems Lecture 4 10 / 41 Delay Tolerant Networking Routing Protocols Delay Tolerant Networking Routing Protocols Deployments 00000000

Example: Communication during Disasters and Emergency

Lecture 4 11 / 41 Ioannis Chatzigiannakis Pervasive Systems Lecture 4 10 / 41 Ioannis Chatzigiannakis Pervasive Systems

Pervasive Systems

Ioannis Chatzigiannakis

- Message exchanges are called bundles.
 - "postal-like" message delivery over regional transports with coarse-grained CoS [4 classes]
 - Options: return receipt, "traceroute"-like function, alternative reply-to field, custody transfer
 - Supportable on nearly any type of network
- Bundles are routed in a store and forward manner.
 - "Application data units" of possibly-large size
 - May require framing above some transport protocols
 - API supports response processing long after request was sent (application re-animation)

Is it an e-mail like communication scheme?

- Many similarities to (abstract) e-mail service
- Primary difference involves routing and API
- E-mail depends on an underlying layers routing:
 - Cannot generally move messages closer to their destinations in a partitioned network
 - In the Internet (SMTP) case, not disconnection-tolerant or efficient for long RTTs due to "chattiness
- E-mail security authenticates only user-to-user

Store, Carry and Forward Scheme for Routing

- A node stores a message until an appropriate communication opportunity arises.
- A series of independent forwarding decisions.
- Eventually bring the packet to its destination.
- Key decisions in forwarding packets:
 - What to send (own packet or a relayed packet ?)
 - 2 To whom (to a relay or the destination ?)
 - 3 When to do so (will suffer collisions, or cause interference ?)
- Simple (and efficient) approach: Randomize on
 - Whom to send.
 - When to send.

loannis Chatzigiannakis Pervasive Systems Lecture 4 13 / 41 Ioannis Chatzigiannakis Pervasive Systems Lecture 4 14 / 41

Routing Protocols Routing Protocols Deployments Store, Carry and Forward Paradign

Store, Carry and Forward Paradigm

Single-Copy Strategy

- Direct transmission Source only forwards message to destination.
- First Contact Node A forwards message to the first encounters.
- Randomized routing Node A forwards message to node B with probability p.

- Epidemic routing
 - Spread of "disease".
 - Whenever "infected" node meets "susceptible" node, a copy is forwarded.
- Utility-based routing:
 - Node A forwards a message to node D to node B iff $U_A(D) < U_B(D)$

Basic Idea of Epidemic Routing

- Bio-inspired: packets are considered to infect nodes (Vahdat & Becker, 2000)
- Nodes are randomly mobile & have ordered identifiers.
- Resources sufficiency (battery / buffers).
- Forwarding Decision: fixed flooding
- Buffers: FIFO

Epidemic Routing

- Buffer (hashed) "index": Summary Vector (SV)
- Reliability: acks

Main Mechanism

Epidemic Routing

- Upon meeting a newly identified neighbor node
 - Exchange SVs,
 - Exchange unknown messages.
- For protocol sake the process is initiated by the node with the smaller identifier.
- Per-host queuing.
- New messages given preference over old ones in terms of buffer availability.

20 / 41

Lecture 4

Routing Protocols Delay Tolerant Networking Routing Protocols Delay Tolerant Networking

Main Concepts of PRoPHET Protocol

- PRoPHET: Probabilistic Routing Protocol using History of Encounters and Transitivi (Lindgren, et al. 2003)
- Users move in a "not so random", predictable fashion.
- Forwarding decision: by Delivery Predictability P(M, D) set up at every node M for each known destination D.
- Epidemic Routing SVs are used here too to exchange.

• When the node Mencounters another node N, the predictability for N increases a

$$P(M, N)_{new} = P(M, N)_{old} + (1 - P(M, N)_{old}) \times L_{enc}$$

where L_{enc} is an initialization constant.

• The predictabilities for all destinations D other than N suffer ageing:

$$P(M, D)_{new} = P(M, D)_{old} \times \gamma \times K$$

where γ is an aging constant, and K is a time factor.

Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 21 / 41	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 22 / 41
Delay Tolerant Networking	Routing Protocols		Delay Tolerant Networking	Routing Protocols ○○○○○○○ ○ ○○○○○○	Deployments 00000000

Protocol Details

• Transitive property updates the predictability of destination D for which N has a P(N, D) value:

$$P(M, D)_{new} = P(M, D)_{old} + (1 - P(M, D)_{old}) \times P(M, E) \times P(E, D) \times \beta$$

where β is a scaling factor.

• The assumption here is that M is likely to meet N again.

Main concepts of MAXPROP

- Motivated by pedestrian mobility and city vehicles (busses) (Burgess, et al. 2006)
- Addressed resources issues considering vehicles.
 - Bulky equipment,
 - Energy.
- Maintains ordered destination based queues.
 - Addresses on top of PRoPHET.
 - QoS,
 - Stale data.
- Assumes:
 - Unlimited buffer for own messages per node,
 - Fixed size buffer for relaying messages,
 - No topology knowledge/control.

Ioannis Chatzigiannakis Ioannis Chatzigiannakis Pervasive Systems Lecture 4 23 / 41 Pervasive Systems Lecture 4

MAXPROP

Communication steps of MAXPROP

- Neighbor Discovery.
 - no knowledge of when the next opportunity to communicate will be.
- Data Transfer.
 - 1 Transfer packets destined for neighbor peer,
 - Transfer routing information,
 - Acknowledge any delivered data,
 - Prioritize "young" relayed packets,
 - 5 Send un-transmitted packets by estimated delivery likelihood,
 - Ensure only new packets are sent.
- Storage Management.
 - Expunge packets to accommodate the relay buffers.

Which Routing Schemes is more suitable?

- Design space is LARGE
- Many different protocols have been proposed in the literature

Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 25 / 41	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 26 / 41
Delay Tolerant Networking	Routing Protocols	Deployments 0000000	Delay Tolerant Networking	Routing Protocols	Deployments
Comparative Evaluation of Parting Schomes			Compositive Evaluation of Partine Schomes		

Diverse Features

An DTN Protocol Architecture

A DTN protocol scheme is made of the combination of three basic techniques:

- Queue management (QM)
- Replication(R)
- Forwarding(FW)

loannis Chatzigiannakis Pervasive Systems Lecture 4 27 / 41 Ioannis Chatzigiannakis Pervasive Systems Lecture 4 28 / 4

Routing Protocols Routing Protocols Delay Tolerant Networking Deployments Deployments Comparative Evaluation of Routing Schemes

Comparative Evaluation of Routing Schemes

How to Evaluate Routing Schemes?

- Many factors affect performance
 - Mobility of nodes,
 - 2 Size of area covered by nodes,
 - Available Resources,
 - Metwork Traffic.

Quantitative Evaluation using Simulation

Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 29 / 41	Ioannis Chatzigiannakis	Pervasive Systems	Lecture 4 30 / 41
Delay Tolerant Networking	Routing Protocols ○○○○○○○○○○○○○○○		Delay Tolerant Networking	Routing Protocols ○○○○○○○○○○○○○○	Deployments 0000000
Comparative Evaluation of Routing Schemes			Comparative Evaluation of Routing Schemes		

Software Simulation Parameters

Evaluation Result: Delivery Ratio

Ioannis Chatzigiannakis Lecture 4 31 / 41 Ioannis Chatzigiannakis Lecture 4 32 / 41 Pervasive Systems Pervasive Systems

Routing Protocols Delay Tolerant Networking

Comparative Evaluation of Routing Schemes

Evaluation Result: Overhead

Wildlife Monitoring

- The users are the biologists.
- Track position of zebras in wildlife.
- Special colars with GPS are attached to zebras.
- Tracking data is replicated when animals are in reach of each other.
- Tracking data gathered daily or weekly using a base station in a car or plane (called a "message ferry").
- Project did not use the term "DTN".

Ioannis Chatzigiannakis Pervasive Systems Lecture 4 33 / 41 Ioannis Chatzigiannakis Lecture 4 Pervasive Systems Delay Tolerant Networking Routing Protocols Deployments Routing Protocols Deployments

Prototype Hardware

Prototype Hardware

Ioannis Chatzigiannakis Lecture 4 35 / 41 Ioannis Chatzigiannakis Lecture 4 35 / 41 Pervasive Systems Pervasive Systems

Delay Tolerant Networking Routing Protocols Deployments

Prototype Hardware

Technical Considerations

- Track animals long term and over long distances.
- All sensing nodes are mobile.
- Large area: 100s ... 1000s sq kilometers.
- "Coarse-Grained" nodes.
- GPS on-board.
- Long-running and autonomous.

Ioannis Chatzigiannakis Delay Tolerant Networking

Routing Protocols

Lecture 4 35 / 41

Ioannis Chatzigiannakis

Pervasive Systems Routing Protocols

Deployments

Delay Tolerant Networking

Public Transportation Network

- A DTN over public transportation busses.
- Deployed in Amherst and surrounding county.
- Includes 40 busses.
- Network inaccessibility corresponds to physical inaccessibility.
 - DTN administration difficult.
 - DTN system administration must be accomplished in a disruption-tolerant manner.
- DTN solution handles configuration of IP, Link, and physical network.
- Buses transfer data as they pass by each other and via available hot spots.

The OpenBrick Hardware

Ioannis Chatzigiannakis Lecture 4 37 / 41 Ioannis Chatzigiannakis Lecture 4 Pervasive Systems Pervasive Systems

Delay Tolerant Networking Deployments Delay Tolerant Networking Deployments DieselNet

The OpenBrick Hardware

Ioannis Chatzigiannakis Pervasive Systems

Routing Protocols

Lecture 4 38 / 41 Deployments

Ioannis Chatzigiannakis Delay Tolerant Networking Pervasive Systems Routing Protocols Lecture 4 38 / 41 Deployments

Delay Tolerant Networking

The OpenBrick Hardware

Pervasive Systems

The OpenBrick Hardware

The OpenBrick Hardware

Ioannis Chatzigiannakis Pervasive Systems Lecture 4 38 / 41

DieselNe

The OpenBrick Hardware

Software Considerations

- Autonomous operation and "shutdown".
- Maximal failure tolerance.
 - No remote administrator login or local terminal.
 - Physical inaccessibility during operation (6am 1am).
 - Nodes versus support staff.
- Handle network interface configurations.
 - Support IP programs.
- Handle bundle routing.
 - Support DTN programs.

DieselNet

Software Components

- Init and Restore
 - Perl and Python
- Auto update
 - Python
- Live IP
 - Java 1.4
- GPS update
 - Python
- OTN daemon
 - Java 1.4 and linux-only Java 1.3

Connection Events

- Red dots indicate bus-to-bus transfers (1 month)
- Measurement of real TCP throughput.
- Traces collected everyday.

loannis Chatzigiannakis Pervasive Systems Lecture 4 40 / 41 Ioannis Chatzigiannakis Pervasive Systems Lecture 4 41 / 41