
Static Synchronous Networks Process Failures Byzantine Failures

Pervasive Systems

Ioannis Chatzigiannakis

Sapienza University of Rome
Department of Computer, Control, and Management Engineering (DIAG)

Lecture 8:
Agreement in Distributed Computing

Ioannis Chatzigiannakis Pervasive Systems Lecture 8 1 / 62

Static Synchronous Networks Process Failures Byzantine Failures

Hierarchical Analysis of Systems Performance

A fundamental method for studying the performance of a system is
the top-down approach

Initially we abstract all technical details and study the system
at high level (i.e., bird’s eye view)
Then, we look into specific modes of operations and
investigate the most important parameters that affect
performance.
Step - by step, we introduce additional levels – until we end
up to our final system, operating in the actual conditions

This approach leads to good results for organizing and analyzing a
broad range of systems
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Contemporary Systems

Hierarchical, centralized, top-down approaches have allowed us to
design very good contemporary systems

e.g., database management systems, mobile telephony
networks

However our always-connected world is becoming more complex

We should not ignore the fact that many contemporary
systems have a totally different structure.
e.g., the stability and effectiveness of contemporary
politico-economic models relies on decentralized, distributed
mechanisms that are independent and self-regulated
The Internet is another example of a similar approach, at a
techno-social level.
How to efficiently organized extremely huge collections of
unstructured or structured data ?
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Limitations of Top-down approach

Studying a pervasive system from a theoretical perspective
contributes to a basic level of understanding its behavior and
rigorously defining its performance bounds.

However, it entails certain pitfalls:

Abstracting certain technical details may lead to totally
unrealistic / non-implementable solutions.
Measuring complexity does not take into account the so-called
“hidden” constants.
A “poor” complexity solution may be very efficient in almost
all practical case.
It is very hard (if not impossible) to analyze the performance
of a system using theoretical tools.
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Performance evaluation by Experimentation

A different approach is the implementation of the system and its
evaluation using practical means:

The implementation may use an experimental framework –
e.g., simulator, testbed facilities, . . .
The performance study is done using well-defined evaluation
scenaria
Measure performance of the “actual” performance.
Immediate validation of the applicability of a solution in
existing technologies.
Results can be deployed to devices in real-world deployments.
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Dual Approach

Each approach has certain benefits and handicaps:

A theoretical approach allows to develop solutions that are
correct by proof, efficient . . . may not be applicable (or very
hard) in current technologies.
A practical approach immediately deals with all technological
issues and provides effective solutions . . . may not result in
innovative solutions that are efficient in large scale systems.

We need to be both efficient and effective.
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Theoretical – Practical Approach Cycle
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Necessity of Dual Approach

Surprisingly, the need for association between theory and
practice has been identified long before the computer science
era.
Philosophers of the antiquity, already, state that the notion of
effectiveness requires two components: design an efficient
prototype, an ideal version that is used to plan the goal; then,
apply this plan in practice.
According to Plato, νoησις (cognition) “captures optimal”
plans, and θελησις (goodwill) is required to apply the ideal
plans in reality.
This is defined by Aristotle as φρoνησιν, the process of
associating the ideal with its application, thus reducing the
gap between these two approaches.
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Message-passing Model

Modeling Processes

The system is comprised from a collection of processing
elements or “processors”.

The “processing element” suggests a piece of hardware.
The “processors” suggests some kind of logical entity (i.e.,
software).
For simplicity we may assume that each processing element
has 1 processor.

Processors execute a collection of processes.

For simplicity we may assume that each processor executes
only one process.
We also assume that each process can be executed by a single
processor.
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Message-passing Model

Modeling the Communication Network

The processing elements (i.e., the processes) are connected
via a connected network (i.e., there exists 1 path between any
pair of processes).
We define the network as a graph G = (V ,E ):

comprised of a finite set V of points – the vertices –
representing the processing untis (i.e., processes) – n = |V |
a collection E of ordered pairs of elements of V (E ⊂ [V ]2) –
the edges – representing the communication channels of the
network – m = |E |
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Message-passing Model

Modeling Communication Channels

Channels are the edges of the graph.

The edges may be directed – to represent
unidirectional communication.
or undirected – to represent bidirectional
communication.

Processes can distinguish each
communication channel and select a specific
one to use.
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Message-passing Model

Modeling Messages

Data exchange over communication channels is done via
message exchanges.
We assume that each communication channel may transmit
only one message at any time instance.
We assume that there exists a fixed message alphabet M

remains fixed throughout the execution of the system.
contains the symbol null a placeholder indicating the absence
a message.

Ioannis Chatzigiannakis Pervasive Systems Lecture 8 12 / 62



Static Synchronous Networks Process Failures Byzantine Failures

Message-passing Model

Neighboring Processes

We say vertex v is outgoing neighbor of
vertex u if

the edge uv is included in G .

We say vertex u is incoming neighbor of
vertex v if

the edge uv is included in G .

We define nbrsoutu = {v |(u, v) ∈ E} all
the vertices that are outgoing neighbors
of vertex u.

We define nbrs inu = {v |(v , u) ∈ E} all the
vertices that are incoming neighbors of
vertex u.
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5 is outgoing neighbor of 8

8 is incoming neighbor of 5

nbrsout9 = {1, 4}
nbrs in9 = {2, 5, 6, 8}
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Message-passing Model

Network Properties

distance(u,v)

Let distance(u,v) denote the length of the shortest directed
path from u to j in G , if any exists; otherwise
distance(u,v)=∞.

diam(G)

Let diam(G) denote the diameter of the graph G , the maximum
distance distance(u,v), taken over all paths (u, v).
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Message-passing Model

Network Topology & Initial Knowledge

Distributed algorithms may be designed for a specific network
topology

ring, tree, fully connected graph . . .

Distributed algorithm may be designed for networks with
specific properties

we say that the algorithm has “initial knowledge”

An algorithm assuming a large number of specific properties is
called “weak” algorithm.

An algorithm that does not assume any specific property is
called “strong” algorithm – since it can be executed in a
broader range of possible networks.
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Message-passing Model

Process States

Each process u ∈ V is defined by a set of states statesu
A nonempty set of states startu, known as starting states or
initial states.
A nonempty set of states haltu, known as halting states or
terminating states.

Each process uses a message-generator function
msgsu : statesu × nbrsoutu → M ∪ {null}

given a current state,
generates messages for each neighboring process.

Uses a state-transition function
transu : statesu × (M ∪ {null})nbrs inu → statesu

given a current state,
and messages received,
computes the next state of the process.

Ioannis Chatzigiannakis Pervasive Systems Lecture 8 16 / 62



Static Synchronous Networks Process Failures Byzantine Failures

Message-passing Model

System Initialization

Initially

all processes are set to an initial state,
all channels are empty.

Algorithms groups processes in two sets
1 Initiators – a process is initiator if it activates the execution of

the algorithm in the local neighborhood.
2 Non-initiators – a non-initiating process is activated when a

message is received from a neighboring process.
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Message-passing Model

Centralized vs Decentralized

An algorithm is classified as centralized if the exists one and only
one initiator in each execution and decentralized if the algorithm
may be initialized with an arbitrary subset of processes.

Usually centralized algorithms achieve low message complexity.
Usually decentralized algorithms achieve improved
performance in the presence of failures.
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Message-passing Model

Uniformity

An algorithm is uniform if its description is independent of the
network size n.

A property that holds for a small network size, also holds for
large network sizes.
We only have to examine the behavior of a protocol (for a
given property) in small network sizes.
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Execution of a distributed algorithm

Algorithm execution: Steps and Rounds

All processes, repeat in a “synchronized” manner the following
steps:
1st Step

1 Apply the message generator function.
2 Generate messages for each outgoing neighbor.
3 Transmit messages over the corresponding channels.

2nd Step
1 Apply the state transition function.
2 Remove all incoming messages from all channels.

The combination of these two steps is called a round (of
execution).
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

1st Round

1st Step

1.α – apply msg gen func

1st Round

1st Step

1.α – apply msg gen func
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Execution of a distributed algorithm

Example of execution of a Synchronous System
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

1st Step

1.α – apply msg gen func

1.β – generate messages

1st Step

1.α – apply msg gen func

1.β – generate messages
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

1.α – apply msg gen func

1.β – generate messages

1.γ – transmit messages

1.α – apply msg gen func

1.β – generate messages

1.γ – transmit messages

M

M
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

1.β – generate messages

1.γ – transmit messages

2nd Step

1.β – generate messages

1.γ – transmit messages

2nd Step

M

M
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

1.γ – transmit messages

2nd Step

2.α – state trans function

1.γ – transmit messages

2nd Step

2.α – state trans function

M

M
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

2nd Step

2.α – state trans function

2.β – delete messages

2nd Step

2.α – state trans function

2.β – delete messages

M

M
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

2.α – state trans function

2.β – delete messages

2nd Round

2.α – state trans function

2.β – delete messages

2nd Round
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

2.β – delete messages

2nd Round

1st Step

2.β – delete messages

2nd Round

1st Step
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Execution of a distributed algorithm
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

1.β – generate messages

1.γ – transmit messages

2nd Step

1.β – generate messages

1.γ – transmit messages

2nd Step

M

M
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

2.α – state trans function

2.β – delete messages

3oς Round

2.α – state trans function

2.β – delete messages

3oς Round
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Execution of a distributed algorithm

Example of execution of a Synchronous System

Initially

all processes are set to an initial state,
all channels are empty.

the processes execute in a “synchronized” manner the
protocol.

Execution of Synchronous System

1 2

2.β – delete messages

3oς Round

1st Step

2.β – delete messages

3oς Round

1st Step
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Execution of a distributed algorithm

System Configuration

We wish to describe the execution of a distributed algorithm.

We assume a sequence of state transitions of the processes of
the system

produced as result of transmissions and receptions of
messages, or
internal (to each process) reasons.

Lets assume a given time instance i

each process u is in state statesu.
the characterization of the state of all processes defines a
configuration of the system Ci .
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Execution of a distributed algorithm

Execution of a distributed algorithm

Initially, processes execute a single round of the algorithm

a given set of message transmissions Mi take place,
a given set of message Ni are received.

The next round i + 1, we say that the system is in
configuration Ci+1

The execution of the distributed algorithm can be defined as
an infinite sequence
C0,M1,N1,C1,M2,N2,C2, . . .
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Failures

Basic Failure Types

We define two abstract types of failures:
1 failures occurring during the transmission of messages,
2 failures occurring on the processing elements (processors).

Communication failure: a failure during the transmission of a
single message over a specific channel of the network.
Stopping failure: a process terminates, either before, or after,
or during the execution of some part of the 1st or 2nd step of
the round.

A failure may happen during the generation of messages,
therefore some outgoing messages are transmitted.
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Failures

Byzantine Failures

The network includes faulty processes that do not terminate
but continue to participate in the execution of the algorithm.
The behavior of the processes may be completely
unpredictable.
The internal state of a faulty process may change during the
execution of a round arbitrarily, without receiving any
message.
A faulty process may send a message with any content (i.e.,
fake messages), independently of the instructions of the
algorithm.
We call such kind of failures as Byzantine failures.
We use byzantine failures to model malicious behavior
(e.g. cyber-security attacks).
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Failures

Why study Byzantine Fault Tolerance?

Does this happen in the real world?
The “one in a million” case.

Malfunctioning hardware,
Buggy software,
Compromised system due to hackers.

Assumptions are vulnerabilities.
Is the cost worth it?

Hardware is always getting cheaper,
Protocols are getting more and more efficient.
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Performance Analysis

Measuring Performance

We wish to study the performance of the system.

We define the minimum requirement,
Select a suitable distributed algorithm.

How can we measure performance?
We use to fundamental metrics to define the complexity of
distributed algorithms:

1 Time complexity
2 Communication complexity
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Performance Analysis

Time Complexity

The time complexity of a synchronous system is defined as the
total number of rounds required for all the processes to produce all
the necessary output, or until all processes enter a halting state.

Directly related with the execution time of an algorithm.
In practice, the execution time of a distributed algorithm is
the most important performance metric.
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Performance Analysis

Communication Complexity

The communication complexity of a synchronous system is defined
as the total number of non-null messages exchanged during the
execution of the system.

In some cases it is measured in total number of bits
exchanged.

in cases when the volume of messages produces congestion in
the network,
and the execution of the algorithm is delayed (for the network
to deliver messages).
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Performance Analysis

Communication Complexity

In real conditions

multiple algorithms are executed concurrently,
they share the same communication medium.
What is the contribution of each algorithm to the total
network congestion ?

It is difficult to quantify the effect that the messages of each
algorithm have on the performance of the other algorithms.
In general, at design time, we always wish to minimize the
messages produced by our algorithms.
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Further reading

Books & Seminal Papers

1 Nancy A Lynch: “Distributed Algorithms”. Morgan Kaufmann
(1996)

2 Michael J. Fischer, Nancy A. Lynch: “A Lower Bound for the Time
to Assure Interactive Consistency”. Inf. Process. Lett. 14(4):
183-186 (1982)

3 Harry R. Lewis, Christos H. Papadimitriou: “Elements of the
Theory of Computation”. Prentice Hall (1981)

4 Barbara Liskov, Alan Snyder, Russell R. Atkinson, Craig Schaffert:
Abstraction Mechanisms in CLU. Commun. ACM 20(8): 564-576
(1977)
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Stopping Failures

Stopping Failures

Processes may simply stop arbitrarily without warning, at any point
during a round of execution of a distributed algorithm. The
process will halt immediately and terminate without further
interaction with the other processes of the system.

Stopping failures model unpredictable processor crashes.
We assume an upper bound σ on the number of stopping
failures

such an upper bound holds for the complete execution of the
distributed system.
is equivalent to other measures, e.g., rate of stopping failure
per round.
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An Algorithm for Stopping Failures

FloodSet Algorithm

Each process u ∈ [1, n] maintains a list lu with input values,
initially included only the input value iu ∈ S of u, lu = {iu}. In
each round, each process broadcasts l , then adds all the elements
of the received sets to lu. After σ + 1 rounds, if lu is a singleton
set (i.e., |lu| = 1), then u decides on the unique element of lu;
otherwise u decides on the default value i0 ∈ S .

We assume a complete graph G .
We assume an upper bound on process failures σ
Let lu(γ) be the values in lu of u at round γ
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An Algorithm for Stopping Failures

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

Complete Graph
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An Algorithm for Stopping Failures

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

1st Round – process 3 fails
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An Algorithm for Stopping Failures

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

2nd Round – process 4 fails
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An Algorithm for Stopping Failures

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

3rd Round – no failures
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An Algorithm for Stopping Failures

Example of execution of FloodSet algorithm

Let a synchronous complete graph n = 4 and σ = 2.

3rd Round – agreement
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An Algorithm for Stopping Failures

Properties of FloodSet

Lemma (FloodSet.1)

If no process failes during a particular round γ, 1 ≤ γ ≤ σ + 1,
then lu(γ) = lv (γ) for all u and v that are active after γ rounds.

Proof: Suppose that no process fails at round γ and let I be the
set of processes that are active after γ − 1 rounds.
Then, ∀u ∈ I will send its own lu(γ) to all other processes at
the end of round γ − 1.
Thus at round γ,

∀u ∈ I , lu(γ) = ∪v∈I lv (γ − 1)
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An Algorithm for Stopping Failures

Properties of FloodSet

Lemma (FloodSet.2)

Suppose that lu(γ) = lv (γ) for all u, v that are active after γ
rounds. Then for any round γ′, γ ≤ γ′ ≤ σ + 1, the same holds ,
that is, lu(γ′) = lv (γ′) for all u, v that are active after γ′ rounds.

Proof: All processes that have not failed for γ rounds have identical
lists.
The processes that have not failed after γ round still maintain identical
lists.
Since no other active process exists, after round γ no new value is
circulated in the network.

Therefore the value of lu,∀u ∈ I will not change in any consecutive round.
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An Algorithm for Stopping Failures

Properties of FloodSet

Lemma (FloodSet.3)

If processes u, v are both active after σ + 1 rounds, then
lu(σ + 1) = lv (σ + 1) at the end of round σ + 1.

Proof: Since there are at most σ failures, there must be a round
γ, 1 ≤ γ ≤ σ + 1 where no process fails.

According to lemma FloodSet.1 lu(γ) = lv (γ) for each u, v
that are still active after round γ
According to lemma FloodSet.2 lu(σ + 1) = lv (σ + 1) for each
u, v that are still active after round σ + 1
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An Algorithm for Stopping Failures

Properties of FloodSet

Theorem

Algorithm FloodSet solves the agreement problem for stopping
failures.

Proof:

Termination condition holds – all processes that are active until the
end of round σ + 1, terminate.

Validity condition holds –

If all processes have initial value τ then the list transmitted is
{τ}
The list lu will not changed at the end of round σ + 1

Agreement condition holds –

According to FloodSet.3
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An Algorithm for Stopping Failures

Properties of FloodSet

Time complexity is σ + 1 rounds
Message complexity is O

(
(σ + 1) · n2

)

Each message may be of size O (n) bits
Communication complexity in bits is O

(
(σ + 1) · n3

)

Alternative rules

Instead of a predefined value i0 ∈ S , choose min(S)
Processes send only messages when they detect a change in
their list (OptFloodSet)
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Commit Problem

The Commit Problem

The processes of the system participate in a transaction. Each
process, according to local knowledge decides if the transaction
ought to be “committed” or “aborted”. If processes wish to
“commit” then the outcome should be “commit”. If at least one
wishes to “abort” then they should all “abort”.

The input domail is {0,1} where 1 represents “commit” and 0
represents “abort”.
In distributed system with multiple databases, in regular time
intervals they consolidate their records – depending on the
outcome of the consolidation process the servers commit or
abort the consolidation transaction.
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Commit Problem

We assume processes correctly solve the commit problem when the
following conditions are satisfied:

1 Agreement: Every pair of processes does not agree on
different output values, that is, @u, v : ou 6= ov

2 Validity:

If a process u has input value iu = ”abort” then the only
possible output value is “abort”.
If ∀u : iu = ”commit” and there are no failures then all
processes output “commit”.

3 Terminate:

week – if there are no failures, then all processes eventually
decide.
strong – all nonfaulty processes eventually decide.
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Two-Phase Commit

TwoPhaseCommit Algorithm

The algorithm assumes a distinguished process, say u1.

Round 1 – All processes except u1 send their initial values to u1.
Process u1 collects all these value, plus its own initial value, into a
vector. If the vector is filled with “commit”, then process iu decides
“commit”. Otherwise, it decides “abort’.

Round 2 – Process u1 broadcasts its deciision to all other processes.
All processes decide on the value received from u1.
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Two-Phase Commit

Execution of TwoPhaseCommit – message transmission diagram

1

2

3

4

i1

i2

i3

i4

1st round 2nd round
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Two-Phase Commit

Properties of TwoPhaseCommit Algorithm

The TwoPhaseCommit solves the commit problem under the
week termination condition.
If a stopping failure occurs in u1 before the end of Round 1 –
the algorithm blocks.
The time complexity is fixed – 2 rounds.
The communication complexity is O (n)
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Three-Phase Commit

ThreePhaseCommit Algorithm

The algorithm assumes the election of a distinguished process, say u1.

Round 1 – All processes except u1 send their initial values to u1.
Process 1 collects all these value, plus its own value, into a vector.
If all positions are “commit”, then u1 becomes “ready” but does
not decide. Otherwise, it decides “abort”.

Round 2 – If u1 decides o1 = “abort′′ sends a message “abort”,
otherwise it sends “ready”. Any process that receives “abort” it
decides “abort”. Any process that receives “ready” becomes
“ready”. If u1 is “ready” then it decides o1 = “commit′′.

Round 3 – If process u1 decided “commit” it sends a message
“commit” to all other processes. Any process receiving “commit”
decides “commit”.
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Three-Phase Commit

Execution of ThreePhaseCommit – message transmission diagram

1

2

3

4

i1

i2

i3

i4

1st round 2nd round 3rd round . . .

Any process may end up in one and only one state:

1 κ0 – decide ou = “abort′′

2 κ1 – decide ou = “commit′′

3 “ready” – not decided yet, but is “ready” to commit
4 “unknown” – not decided yet and not “ready” to commit
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Three-Phase Commit

Lemma (ThreePhaseCommit.1)

After three rounds of ThreePhaseCommit algorithm the following
are true:

1 If any process’s state is in ready or κ1, then all processes’
initial values are “ready”.

2 If any process’s start is in κ0, then no process is in κ1 and no
non-failed process is in ready.

3 If any process’s state is in κ1, then no process is in κ0, and no
non-failed process is in uncertain.
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Three-Phase Commit

Lemma (ThreePhaseCommit.2)

After three rounds of ThreePhaseCommit, the following are true:

1 The agreement condition holds.

2 The validity condition holds.

3 If process u1 has not failed, then all non-failed processes have
decided.

Proof: The agreement condition follows from Lemma
ThreePhaseCommit.1.

The agreement condition follows

partially from Lemma ThreePhaseCommit.1 – if a process
starts with “abort”, then all decide “abort”,
investigate all other cases.
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Three-Phase Commit

If process u1 does not fail, then all active processes have decided.

Process u1 decides if no failure occurs.
Transmits the decision to all other processes.
All processes that receive the message and do not fail, decide.

The three first rounds are not enough to solve the problem
under the strong termination condition.
If process u1 fails, some processes may remain in state
“unknown”.
The processes execute a “termination protocol”.
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Three-Phase Commit

ThreePhaseCommit Algorithm

Round 4 – All (not yet failed) processes send their current
stutus (κ0, κ1, “ready”, “unknown”) to u2 that puts them in
a vector. If the vector:

1 contains at least one κ0 and u2 has not yet decided, it decides
“abort”.

2 contains at least one κ1 and u2 has not yet decided, it decides
“commit”.

3 all values are “unknown” then u2 decides “abort”.
4 all values are either “unknown” or “ready”, then u2 becomes

“ready”.
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Three-Phase Commit

ThreePhaseCommit Algorithm

Round 5 – If process u2 decided to “abort” it sends an
“abort” message, while if if decided to “commit” it sends a
message “ready”. If u2 has not yet decided it sends “ready”.
Any process receiving a “abort” or “commit” decides
accordingly – if it receives “ready” it becomes “ready”. If u2

has not decided, it decides “commit”.

Round 6 – If process u2 decided “commit” it sends out a
message “commit” to all other processes. Any process
receiving a “commit” message and has not decided yet, it
decides “commit”.

The protocol repeats the last three similar rounds coordinated by
each process u ∈ [3, n].
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Three-Phase Commit

Properties of ThreePhaseCommit algorithm

The ThreePhaseCommit algorithm solves the commit problem
under the strong termination condition

By induction on the number of rounds.
Based on Lemmas ThreePhaseCommit.1,
ThreePhaseCommit.2

Time complexity is 3n rounds – O (n)
Communication complexity is O

(
n2
)
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Byzantine Failures

Byzantine Failures

The network includes faulty processes that do not terminate
but continue to participate in the execution of the algorithm.
The behavior of the processes may be completely
unpredictable.
The internal state of a faulty process may change during the
execution of a round arbitrarily, without receiving any
message.
A faulty process may send a message with any content (i.e.,
fake messages), independently of the instructions of the
algorithm.
We call such kind of failures as Byzantine failures.
We use byzantine failures to model malicious behavior
(e.g. cyber-security attacks).
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Byzantine Failures

Why study Byzantine Fault Tolerance?

Does this happen in the real world?
The “one in a million” case.

Malfunctioning hardware,
Buggy software,
Compromised system due to hackers.

Assumptions are vulnerabilities.
Is the cost worth it?

Hardware is always getting cheaper,
Protocols are getting more and more efficient.
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Byzantine Generals

Coordinated Attack of 4 Byzantine Generals

Four generals wish to coordinate the attack of their armies in an
enemy city. Among the generals there exits a traitor. All loyal
generals must agree to the same attack (or retreat) plan regardless
of the actions of the traitor. Communication among generals is
carried out by messengers. The traitor is free to do as he chooses.

Consensus problem in a system with n = 4 processes under
the presence of byzantine failures.
Possible input/output values are “yes” or “no” – that is
S = {”yes”, ”no”}
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Byzantine Generals

Problem Statement

On general achieves the role of Chief of Staff.
The Chief of Staff has to send an order to each of the n − 1
generals such that:

1 All faithful generals follow the same order
(all non faulty processes receive the same message)

2 If the Chief of Staff is faithful, then all faithful generals follow
his orders
(if all processes are non-faulty then the messages received are
the same with the transmitting process)

The above conditions are known as the conditions for
“consistent broadcast”.
Note: If the Chief of Staff is faithful, then the 1st condition
derives from the 2nd. But he may be the traitor.
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Byzantine Generals

Discussion

A solution for the Byzantine Generals problems allows:
1 Reliable communication in the presence of tampered messages
2 Reliable communication in the presence of message omissions

Dealing with message omissions (link/stopping failures) is the
most common approach.
We name faults Byzantine all faults that fall under these two
categories.
All solutions to the problem require a network size at least
three times the number of failures – that is n > 3β.

Different situation from stopping failures where n and σ did
not follow any relationship.
May sound surprising high, due to the triple-modular
redundancy – that states that n > 2β + 1.
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Byzantine Generals

Impossibility result

Let’s examine the following cases involving 3 generals:

Case #1

Chief of Staff

General 1 General 2

Attack Attack

said “retreat”

Case #2

Chief of Staff

General 1 General 2

Attack Retreat

said “retreat”

In case #1, General 1 in order to meet the 2nd condition, he
has to attack.

2nd Condition

If the Chief of Staff is faithful, then all faithful generals follow his
orders.
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Byzantine Generals

Impossibility result

Let’s examine the following cases involving 3 generals:

Case #1

Chief of Staff

General 1 General 2

Attack Attack

said “retreat”

Case #2

Chief of Staff

General 1 General 2

Attack Retreat

said “retreat”

In case #2, if General 1 attacks then he violates the 1st
condition.

1st Condition

All faithful generals follow the same order
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Byzantine Generals

Impossibility result

Given the messages received by General 1, each case looks
symmetric.
General 1 cannot break the symmetry.
No solution exists for the Byzantine Generals in case of 3
generals and 1 traitor.
Generalization of the impossibility result:
No solution exists for less then 3β + 1 generals if it has to
deal with β traitors.
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Byzantine Generals

Lamport, Shostak and Pease Algorithm

L. Lamport, R. Shostak, M. Pease: “The Byzantine Generals Problem”,

ACM Transactions on Programming Languages and Systems, 4(3): pp

382-401, 1982.

The algorithm makes three assumptions regarding
communication:

1 All message transmissions are delivered correctly.
2 The receivers knows the identity of the sender.
3 The absence of a message can be detected.

The 1st and 2nd assumptions limit the traitor from interfering
with the transmissions of the other generals.
The 3rd assumptions prevents the traitor to delay the attack
by not sending any message.
In computer networks conditions 1 and 2 assume that the
processors are directly connected and communication failures
are counted as part of the β failures.
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Byzantine Generals

Lamport, Shostak and Pease Algorithm

Let n processes and β failures.
Processes have a predefined decision odef that is used when
the Chief of Staff is a traitor (e.g., retreat).
We define function majority(o1, . . . , on−1) = o that computes
the majority of decisions ou = o

Algorithm UM(n,0) (for 0 traitors)

1 The Chief of Staff transmits decision o to all generals.

2 All generals decide o or if they do not receive a message, they
decide odef .
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Byzantine Generals

Lamport, Shostak and Pease Algorithm

Algorithm UM(n,m) (for m traitors)

1 The Chief of Staff transmits decision o to all generals.

2 For each general u

Set ou to the value received, or if no message received, set to
odef .
Send the value ou to the n − 2 generals by invoking
UM(n − 1,m − 1).

3 For each general u and each v 6= u

Set ov to the value received from u at step 2, or if no message
received set to odef .
Decide on value majority(o1, . . . , on−1).
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Byzantine Generals

Example of Execution

n = 4, β = 1 – G3 is the traitor

C

G1 G2 G3

G2 G3 G1 G3 G1 G2

o o o

o o o o x y

At the end of 1st phase: G1 (o1 = o), G2 (o2 = o), G3 (o3 = o)

At the end of 2nd phase:

G1 – o1 = o, o2 = o, o3 = x
G2 – o1 = o, o2 = o, o3 = y
G3 – o1 = o, o2 = o, o3 = o

At the end of 2nd phase, each general has the same number of

values and reaches the same decision due to condition 1.

The decision of the Chief coincides with the majority (2nd condition)
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Byzantine Generals

Example of Execution

n = 4, β = 1 – the Chief of Staff is the traitor

C

G1 G2 G3

G2 G3 G1 G3 G1 G2

x y

x x y y odef odef

At the end of 1st phase: G1 (o1 = x), G2 (o2 = y), G3 (o3 = odef )

At the end of 2nd phase:

G1 – o1 = x , o2 = y , o3 = odef
G2 – o1 = x , o2 = y , o3 = odef
G3 – o1 = x , o2 = y , o3 = odef

The three loyal generals decide majority(x , y , odef ) thus both 1st

and 2nd conditions are met.
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Byzantine Generals

Lemma

For any m and k, UM(m) adheres the 2nd condition given 2k + m
generals and at most k traitors.

Proof: (By induction on m)
In the 1st step, UM(0) works if the Chief of Staff is loyal, i.e.
UM(0) meets the 2nd condition.
Let’s assume that UM(m − 1) meets the 2nd condition for m > 0.
We can show that it holds for m:

In the 1st step, the loyal general sends the value o to n − 1
generals.
In the 2nd step all loyal general execute UM(m − 1).
From the original assumption it holds that n > 2k + m or
n − 1 > 2k + (m − 1).
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Byzantine Generals

From the induction step that we defined, each loyal general u
receives ou = ov from each loyal general v .
Since there are at most k traitors and
n − 1 > 2k + (m − 1) ≥ 2k , i.e., k < n−1

2
then the majority is reached from the n − 1 loyal generals.
Thus each loyal general has ou = o for majority of n− 1 values
– thus in the 3rd step, by invoking majority(o1, . . . , on−1) it
outputs o that meets the 2nd condition.
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Byzantine Generals

Theorem

For any m, UM(m) adheres the 1st and 2nd condition given 3m
generals and at most m traitors.

Proof: (By induction on m)
If no traitors exists it is easy to show that with the user of the
algorithm, in the 1st step, conditions 1 and 2 hold.
If we assume that UM(m− 1) meets conditions 1 and 2 for m > 0.
We can show for m:
Case 1:

Assume the Chief of Staff is loyal.
For k = m due to the Lemma, UM(m) meets the 2nd
condition.
Since the 1st condition derives from the 2nd condition when
the Chief of Staff is loyal, it is enough to show the second
case:
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Case 2:

The Chief of Staff is a traitor.
There exist at most m traitors and the Chief of Staff is among
them.
Thus, at most m − 1 generals are traitors.
Since we have 3m generals, the loyal generals must be
3m − 1 > 3(m − 1)
Therefore we can apply the inductive step and conclude that
UM(m − 1) meets the 1st and 2nd condition.
Thus for each v , each pair of loyal generals receives the same
value ov in the 3rd step.
Thus, each pair of loyal generals receives the same number of
values and thus majority(o1, . . . , on−1) returns the same value
– which meets the 1st condition.
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Properties of Algorithm

By applying UM(n,β) we get n − 1 messages
For each message the UM(n,β − 1) is activated that generates
n − 2 messages
. . .
The total number of messages is O(nβ+1)
The β+ 1 steps during which messages are exchanged between
the processes is a mandatory feature of algorithms that need
to reach consensus in the presence of β faulty processes.
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